body persisting in mature conidia, and (2) in possessing more slender and longer arms, slightly tapering towards their basis. These features were found to be constant in culture and no intermediate shapes of conidia were observed in the material from the original locality.

The swollen centre differentiates this species also from *L. filiformis*, to which it approximates in size. The arms in the latter species taper towards their ends. *L. terrestris*, retaining the globular central part more or less also in the mature conidia, has markedly shorter and wider arms, tapered distinctly towards the ends. *L. cornuta* is clearly different in the absence of the apical arm.

In cultural characteristics *L. centrosphaera* is more similar to the mycelial than to the sclerotial strains, both of which are known to occur in nearly all the species.

I have been unable to find in the literature any illustrations of conidia similar to those of *L. centrosphaera* with the exception of two recent reports by Ingold. In the first (Ingold, 1967, fig. I, 12) he illustrates one conidium and in the second (Ingold, 1968, text-fig. 2), five conidia, the given size of which (central spherical region c. 8 μ diam, arms each 70–120 μ long) corresponds precisely to my observations. There is no doubt that these conidia are identical with those of *L. centrosphaera* from the High Tatras; the occurrence of this species in two British localities confirms that a new species is involved and not merely an aberrant form of *L. aquatica*.

REFERENCES

L. MARVANOVÁ, Czechoslovak Collection of Microorganisms. The J. E. Purkyně University, Brno.

Phomopsis schini (Carranza) comb. nov.

The generic name *Myxosporella* was published by Saccardo (1881) with *M. miniata* Sacc. as the only species. The genus was considered similar to *Myxosporium* Link ex Corda except that the conidia were catenate. *M. miniata* was described from dead branches of *Platanus occidentalis* L. and characterized by convex red acervuli and ellipsoidal, obtuse-ended, eguttulate, rose-hyaline, catenate conidia, 16–20 × 10–12 μ, formed from simple, branched, sparingly septate, terete, pale rose conidiophores.

No material of this species is extant in the Saccardo herbarium (PAD), but the fungus was illustrated by Lindau (1900). The figures conform well to Saccardo's description. No collection details were cited in the brief accompanying description but the material was mentioned as originating in 'Oberitalien'. It is conjecture to suggest that this may have been Saccardo's material.

Three binomials have since been published in *Myxosporrella*, *M. populi* Jaap (1907) from dry branches of *Populus alba* L., *M. salicis* Jaap (1916) from dry branches of *Salix repens* and *M. schini* Carranza (1950) from leaves and twigs of *Schinus molle* L. The names *Myxosporrella oxyacanthae* Jaap in Oudemans (1924) and *Mycosporella oxyacanthae* Jaap in Oudemans (1912) are both in error for *Mycosphaerella oxyacanthae* Jaap which is placed in synonymy with *Sphaerella oxyacanthae* (Jaap) Sacco & Trott. in Oudemans (1921). Hitherto, there has been no revisionary work on these species, consequently there have been no changes in nomenclature.

The purpose of this work was to re-assess the taxonomic position of *Myxosporrella schini*, a species which was shown to be pathogenic, causing anthracnose of pepper-tree (*Schinus molle*) in Argentina. It has not been possible to borrow the type collection of *M. schini*, but Professor J. C. Lindquist (LPS) has placed at my disposal a specimen collected later but from the same tree. Observations on this material endorse those of Carranza (1950) in most respects. Twig and stem lesions were lenticular, coagulated longitudinally, white in the centre, surrounded by a dark brown to black, marginal zone and a region of raised bark. Leaf lesions were sparse, circular, cream brown, surrounded by a dark brown border. Jutifications were found to be typical pycnidia with walls several cells thick and composed of honey yellow to subhyaline, thin-walled pseudoparenchymatic cells somewhat darker in the ostiolar region. Conidiophores were formed from the inner cells of the pycnidial wall, filiform, hyaline, aseptate, sparingly branched at the base and more rarely just below the transverse septa, bearing terminal phialidic apertures, 7–10 × 2 μ. Conidia were not catenate but were observed forming from the apical phialidic apertures of main and lateral branches of the conidiophores. Conidia were acerosely, both ends acute, aseptate, hyaline, with a single germ at each end of the spore, occasionally slightly constricted in the middle, 6.5–8.5 × 1.5–2 μ.

These features clearly indicate that the fungus does not belong in *Myxosporrella* as defined by Saccardo (1881) and Lindau (1900). The structure of the pycnidia and the fusiform biguttulate conidia formed from phialides are typical of *Phomopsis* (Sacc.) Šacc. That some pycnidia develop in leaf-lesions does not preclude the inclusion of this species in *Phomopsis* since Hughes (1953) and Sutton (1965, 1967) assigned similar felicolous species to the genus. In accordance with the aforementioned observations, the following new combination is proposed:

Phomopsis schini (Carranza) comb.nov.

Specimen examined: on leaves and stems of Schinus molle, Fac. Agronomía, La Plata, Argentina, J. C. Lindquist, 20 May 1964. Labelled 'locotype' of M. schini. (Slides as WINF (M) 4328 ex LPS.)

I am very grateful to Professor J. C. Lindquist (LPS) for lending the material of M. schini and to Professor C. Cappelletti (PAD) for his assistance in trying to locate the original material of M. miniata.

REFERENCES

B. C. Sutton, Department of Forestry and Rural Development of Canada, Manitoba-Saskatchewan Region, Winnipeg, Manitoba

Fungi Assigned to Phoma exigua, with Special Reference to Those Causing Gangrene of Potato

In considering the taxonomy of the species of Phoma on potatoes, Malcolmson (1958a, b) and Boerema & Van Kesteren (1962) concluded that P. tuberosa Melhus, Rosenb. & Schultz and P. foveata Foister should be included in the older species P. solanica Prill. & Delacr., sensu Köhler. Those isolates which produced crystals and pigment were assigned to P. solanica f. foveata. As a result of a study of foot rot of flax, Maas (1965) advocated the inclusion of the causal organism, Ascochyta linicola Naum. & Vass., and of P. solanica Prill. & Delacr., a ubiquitous soil-borne organism, in the older species P. exigua Desm., naming them P. exigua Desm. var. linicola (Naum. & Vass.) Maas and P. exigua Desm. var. exigua respectively. Following Maas, Boerema (1967) and Boerema & Höweler (1967) have recognized two varieties of P. exigua as causing gangrene in potatoes. Isolates which produced anthraquinone pigment were assigned to P. exigua Desm. var. foveata (Foister) Boerema on this basis, and on their tolerance of lower temperatures and their greater pathogenicity to potato tubers than pigment-free isolates, which were assigned to P. exigua Desm. var. exigua. P. exigua var. exigua had a wide host range, while P. exigua var.