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Abstract

An increasing number of studies have demonstrated the impact of landscape disturbance on
ecosystems. Satellite remote sensing can be used for mapping disturbances, and fusion
techniques of sensors with complimentary characteristics can help to improve the spatial and
temporal resolution of satellite based mapping techniques. Classification of different
disturbance types from satellite observations is difficult, yet important; especially in an
ecological context as different disturbance types might have different impacts on vegetation
recovery, wildlife habitats and food resources. We demonstrate a possible approach for
classifying common disturbance types by means of their spatial characteristics. First, landscape
level change is characterized on a near bi-weekly basis through application of a data fusion
model (Spatial Temporal Adaptive Algorithm for Mapping Reflectance Change -STAARCH) and a
number of spatial and temporal characteristics of the predicted disturbance patches are
inferred. A regression tree approach is then used to classify disturbance events. Our results
show that spatial and temporal disturbance characteristics can be used to classify disturbance
events with an overall accuracy of 86% of the disturbed area observed. The date of disturbance
(DOD) was identified as the most powerful predictor of the disturbance type together with the
patch core area, patch size, and contiguity.

Keywords: Disturbance mapping; Disturbance attribution; Landsat; MODIS; change detection; temporal
resolution; forest harvest; Ursus arctos L..

1. INTRODUCTION

Natural and anthropogenic disturbances can have major impacts on biodiversity by fragmenting,
reducing or increasing edges of wildlife habitats and by increasing availability of open areas and
associated food resources, such as emerging grasses and herbaceous plants (1, 2). For example, Grizzly
bear (Ursus arctos L.) habitats are influenced by the temporal and spatial distribution of disturbances
within the bear home ranges (1, 3) and as a result, wildfire, harvesting, urban expansion road
development, mining, and oil and gas exploitation activities all have a potential impact on bear habitat
use and survival (4). Disturbed areas, such as fire scars, roadside verges and harvested forest areas, can
provide high quality forage(1, 3), however, bears also experience increased mortality when using such
areas, due to a higher risk of conflict with humans (5).

Effective protection of wildlife habitats requires reliable mapping and classification of fine scale
disturbances to provide up-to-date spatial coverage for the management and conservation of fauna
species(6). Through the use of remote sensing and modelling approaches, wide-scale observations of
disturbances are becoming increasingly operational and reliable (7) and remote sensing observations are
being used in a wide range of ecological studies (8). In forested areas, stand replacing disturbances
caused by fire, clear felling, wind throw, and changes in land use can be readily identified (9, 10). A
number of recent studies have also demonstrated that more subtle disturbances associated with tree
thinning, insect outbreaks, and changes in forest composition can be successfully mapped from finer
spatial resolution (pixels sided 10 — 100 m) remote sensing satellites (11, 12). In particular, Landsat
imagery, with a 30 m spatial resolution, is often used to monitor changes in land cover (Wulder et al.
2008) and to map ecosystem disturbance at landscape and continental scales (12). While Landsat is
limited by its lengthy revisit cycle (16 days) which can be markedly extended in regions with frequent



cloud cover (13, 14), combination of Landsat with imagery from sensors with complementary spatial and
temporal characteristics can help overcome some of these restrictions. For instance, high spatial
resolution imagery can be combined with high temporal resolution data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) to allow the generation of synthetic, Landsat-like, observations
with high spatial (30m) and temporal (potentially daily) resolution (13, 15). These techniques allow the
explicit detection of disturbance events at spatial scales smaller than that of a MODIS pixel and at bi-
weekly intervals (15, 16). In this study we utilise such a fusion approach, the Spatial Temporal Adaptive
Algorithm for mapping Reflectance Change (STAARCH) (16) to derive disturbances over a 185x185 km
study area in western Alberta, Canada. The STAARCH algorithm has the advantage over other data
fusion techniques such as STARFM (13) or ESTARFM (17) that it explicitly accounts for small to medium
area sized disturbance (<5ha (18)) thereby mapping the time of disturbance and its spatial extent. We
investigate a series of spatial and temporal rules which can be used to characterise the type of
disturbances occurring on the landscape, with the ultimate goal of linking these disturbance types back
to Grizzly bear behaviour and movements. The findings reported in this study will help to facilitate more
accurate mapping of disturbance events, time of occurrence and disturbance types.

2. METHODS
2.1. The Alberta Grizzly Bear Habitat Study Area

Loss of grizzly bear habitat is occurring throughout the northern United States and southern Canada (4)
with only 37% considered secure within the current park and conservation network (19). This is a critical
issue, especially in Alberta, where populations are low yet oil and gas exploration is increasingly
changing the landscape, as is timber harvesting due to the mitigation in response to the current
infestation of the mountain pine beetle (2). As a component of the Alberta grizzly bear recovery plan,
core (considered areas of high resources and low mortality risk) or secondary (areas with increased
mortality risk) bear habitats have been defined. Mapping with attribution of key disturbance events
within core and secondary habitats is a key management imperative(18).

A total of 42 Landsat 5 TM scenes covering an area of 14 path/rows (Figure 1), acquired between July
and October 2001, June and August 2004 and July and September 2008 were obtained from the USGS
GLOVIS archive (http://glovis.usgs.gov/) (18). Images were selected to minimise cloud cover (where
possible to below 30%) and the temporal separation between adjacent scenes across the study area. All
images were atmospherically corrected using a dark object subtraction(18). MODIS 8-day composites
from 2001 to 2008 were also acquired for the entire area and re-projected to Universal Transverse
Mercator (UTM) projection using the MODIS re-projection tool, clipped to the extent of the Landsat
imagery and re-sampled to a 30 m spatial resolution. Land cover data was obtained from the Landsat-7
land cover classification of Canada that was produced for the Earth Observation for Sustainable
Development of Forests (EOSD) initiative(20), representing circa year 2000 conditions.

2.2.Detection of landscape disturbance

STAARCH is a change detection algorithm designed to map forest disturbance events at a 30m spatial
resolution and at weekly or bi-weekly time intervals (16). The spatial extent of a given disturbance can
be determined from any two Landsat scenes acquired before and after the disturbance event: The
change detection in STAARCH utilizes a disturbance index (11) derived from a Tasselled Cap transformed
image space of each of the two Landsat scenes (21). The date of disturbance (DoD) for each disturbed
area is then determined from a time series of MODIS images acquired at weekly or bi-monthly intervals,



a detailed description can be found in (16). The two main outputs of STAARCH are 1) a spatial change
mask of forest disturbance at 30m spatial resolution and 2) a MODIS image sequence representing the
temporal evolution of these disturbance events. Change predictions are restricted to cloud free areas
with clouds detected automatically using a Landsat-based cloud filter(22). In this study we utilized
STAARCH derived disturbance data over 150,000 ha in the study area in west-central Alberta mapping
disturbances in bi-monthly intervals between June 2001 and August 2008((18), Figure 1). The STAARCH
algorithm was implemented separately on each Landsat path/row to produce 14 disturbance sequences.
Once combined, the sequences serve to collectively cover the majority of the Alberta grizzly bear core
and secondary habitat area, with change predictions made at 16 day time steps.

2.3.Determining the type of disturbance from spatial characteristics

The aim of this analysis was to determine the type of disturbance from the spatial characteristics of
individual disturbance events. Landscape pattern indices can be grouped into categories of size, shape
index (edge-to-area ratio), isolation/proximity and contagion/interspersion (23). Critical indices in
forested environments undergoing disturbance, based on a previous review (24) include the number of
patches per unit area, size class, and area-weighted mean patch size. In concert with edge density, these
indices provide an indication of the degree of fragmentation associated with the different disturbance
events. Conversely, area-weighted mean fractal dimension, mean proximity index, and
interspersion/juxtaposition index provide a means to characterize patch shape, patch
isolation/proximity, and contagion/interspersion, respectively (24).

Patch analysis of the disturbed areas was undertaken using Fragstats, a software tool designed to
compute a wide variety of landscape metrics for categorical maps (23). The disturbed pixels can be used
as input into the algorithm. Fragstats automatically generates patches by growing an area of disturbed
pixels until no more direct neighbour is found. The algorithm computes disturbance characteristics
based on a number of patch characteristics. These fragstats characteristics can be broadly categorized as
area/density/edge metrics, shape metrics, core metrics, isolation/proximity metrics, contrast metrics,
contagion/interspersion metrics, connectivity metrics, and diversity metrics (25). In this study, we
characterized the disturbed areas identified by STAARCH using 19 different Fragstats derived metrics
including area (AREA), perimeter (PERIM), radius of gyration (GYRATE), number of patches (NP), patch
density (PD), edge density (ED), landscape shape index (LSI), and largest patch index (LPI), perimeter-
area ratio (PARA), shape index (SHAPE), continuity index (CONTIG), fractal dimension index (FRAC),
linearity index (LINEAR), circumscribing circle (CIRCUM), core area (CORE), number of disjunct core areas
in each patch (NCORE), Isolation/Proximity (PROXIMITY), Euclidean Nearest Neighbour (ENN) (see Help
Content of Fragstats for further information and definition). In addition to these spatial categories, the
high temporal density of the STAARCH based output also allowed us to use the disturbance date as an
additional characteristic.

The disturbance characteristics which best predicted the type of disturbance were identified using
decision tree analysis. This non parametric approach serves to automatically separate the dependent
variables (spatial and temporal disturbance characteristics) into a series of choices that not only
identifies the importance of each constraining variable but also identifies thresholds that best separate
one class from another and best explain the response variable (here: disturbance type). One advantage
of using decision trees over conventional regression techniques is its capacity to deal with collinear
datasets, to exclude insignificant variables and its independence of dataset distributions such as
asymmetrical distribution of samples (26, 27). Decision Tree Regression (DTREG) software was used to



develop a classification tree for each disturbance type using a 10 -fold cross validation technique where
the total dataset is partitioned randomly into 10 equally sized groups, a model is developed on nine of
the groups, and then tested against the remaining 10% of the data not used in model development. Tree
pruning was set to the minimum cross validation error and a maximum tree depth of six levels was
defined to prevent overly complex model results.

A disturbance type map for validation was available which had been derived from visual interpretation
undertaken by a trained aerial photographic analyst familiar with the region. Air photo interpretation
was based on maps of fire history, harvesting records and road coverage. For demonstration of our
technique, we used the most common disturbance types occurring in the study area: cutblocks, fires,
roads, and wellsites. Photo-interpreted were matched to STAARCH-detected patches with different of
different spatial extent by assigning the patch with the the largest common area of overlap, a total of
189 disturbance patches identified by the photo-interpreter were used as training dataset.

3. RESULTS

Figure 2 illustrates examples of different types of disturbances examined in the study area. Figure 2A
shows the Dogrib Creek Fire, which burned from September to October, 2001 in an area of 787.8 ha
(18). Burns were primarily characterized by large, contiguous patch sizes (>4.5 ha). An example of cut
blocks is provided in Figure 2B. The blue areas in the image show harvesting activities since 2001, the
other patches are disturbances that have occurred previous to this date and have been ignored in this
study. Cut blocks were characterized by regular shape and “checkerboard” configuration, typically
around 25-50ha in size. Well sites (Figure 2C) were characterized by attachment to short access roads
and smaller, rectangular disturbance patches, whereas roads were determined mainly by their long and
comparatively narrow shapes (Figure 2D).

The classification tree resulting from fitting the different disturbance types to the patch metrics derived
from Fragstats is presented in Figure 3. The tree depth was restricted to 6 levels and the tree was
pruned to its minimum cross validation error. The overall classification accuracy was 86.17%, based on
the total area disturbed; the sensitivity and specificity statistics for each disturbance type is provided in
Table 1. The sensitivity describes the proportion of positives correctly classified as such. Specificity
describes the proportion of negatives which are correctly identified. The misclassification errors ranged
between 20-30% for cutblocks, fires and wellsites, whereas roads were misclassified more often (60%).
The accuracies for the individual disturbance types ranged between 83 and 89%, while the precision
ranged between 58 and 82%. Lowest precision values were found for roads, which also showed the
highest rate of misclassification.

Table 2 shows the confusion matrix for cutblocks, fires, wellsites and roads. Most common
misclassifications occurred between fires and cutblocks and between roads and wellsites. The
producer’s accuracy for the four different disturbance classes ranged between 56 and 79%, while the
users accuracy was lowest for roads (40%), and highest for cutblocks (80%). The overall accuracy
resulting from the confusion matrix was 67%, please note however, that the amount of total area
correctly identified is higher (86%) as the confusion matrix does not take the differences in percent area
covered by each disturbance class into account. Regression tree analysis was successfully used to extract
the most important spatial and temporal characteristics from the set of variables computed by STAARCH
and Fragstats. A ranking of the shape metrics and disturbance characteristics that were used to
characterize the different types of disturbance is presented in Table 3. The importance of values is



scaled between 100 (most important) and 0 (not important). The most important metrics for classifying
the disturbances was the month of disturbance as identified from the STAARCH algorithm, followed by
the core (interior) area of the disturbed patch and the disturbance size. Core Area Index and Contiguity
both describe the shape of disturbance by comparing the disturbed core area to the disturbance
perimeter. It should be noted that no STAARCH predictions were made outside the growing season due
to possible snow contamination, and, as a result, disturbance events occurring after October 15" were
assigned the disturbance date of the first prediction of the following year (March 15™).

4. Discussion

This study demonstrated a possible approach for mapping disturbance types through automated
detection and classification of disturbance events derived from a data fusion model. Techngiues like this
are particularly important for habitats associated with rare species, such as grizzly bears, given the
difficulty of repeatedly visiting remote sites at the frequency and quality necessary for detecting
changes in critical food resources(28). While this research described an approach for the classification of
automatically detected disturbance events further research will be required to determine disturbance
types that are of key importance for grizzly bear movements and habitat use, both in terms of short and
long term response(18) and eventually link these disturbance types back to bear population and bear
ecology. For instance, the temporal distribution and patch size of disturbance events appears to be
influenced by the dominant disturbance type with small patches resulting from harvesting and much
larger areas being disturbed by wildfires. The least disturbed areas were often located in areas away
from road networks and at high elevations. These are also areas that contain large proportions of core
grizzly bear habitat in conservation areas (1, 3, 4). Further research is needed to link the cause and the
time of disturbance to grizzly bear movement and presence in given areas in order to minimize the
impact of such events on the bear population.

We presented a case study of a disturbance classification based on spatial and temporal patch
characteristics. The selected technique was particularly successful in distinguishing between
disturbances with more compact shapes, such as cutblocks or fires and stretched disturbance types
which typically represented an access road or other linear feature such as pipeline right-of-way. These
disturbance types were classified correctly in 60-70% of the cases (Table 1) and little to almost no
confusion was found between these two disturbance types (Table 2). This is also reflected in the
predictive power of the individual variables shown in Table 3. Most of the disturbance metrics were
related to the compactness of the area, area size and shape. Additionally, the contiguity of the
disturbance patches was identified as a significant predictor of the type of disturbance. The high ranking
of the time of disturbances demonstrates the usefulness of the STAARCH algorithm not only to predict
the temporal sequence of individual disturbance events but also to classify the disturbance type. A
potential explanation for the significance of this metric is the increased harvesting and mining activity
during the growing season, which will also lead to increased disturbances due to road construction
during this time. Likewise forest fires occur predominantly during dryer periods, thereby providing an
opportunity automatic classification of this disturbance type (18) (in combination with shape
characteristics) Misclassifications were found mainly for disturbances related to road construction. Most
commonly misclassified as well sites (Table 2), both classes have similar spatial characterises with long
and thin shapes (Figure 2). Many wellsite patches were merged with the associated spur road, which is
another explanation for the higher misclassification rate. Additionally, road disturbances were only a
few Landsat pixels wide, and as a result, the coherent disturbances were often patched into multiple
disturbance polygons, such as shown in Figure 2D), which may explain the higher rate of
misclassification as segments have different shapes and sizes than an unbroken feature would have.
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Often, road polygons occurred where the road widened, such as a junction or borrow pit. Classification
tree analysis was used successfully to classify the disturbance patches according to their spatial and
temporal characteristics. One of the potential limitations of classification and regression trees is
overfitting of the model and complexity of the resulting tree model. While in this study a simple
threshold was used to prune the tree to a depth of 5 levels maximum, future research could make use of
other robust techniques such as decision tree forests or random forest approaches.

The results presented in this work will inform on the development of new classification algorithms that
will allow the prediction of disturbance types over large areas and from automated remote sensing
approaches.
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Table 1: Sensitivity and specificity analysis of the predicted disturbance types derived from classification

tree analysis.

Category Accuracy | Sensitivity | Specificity | Geometric | Precision | Recall | Misclassified | F-statistics
(%) (%) (%) mean (%) (%) (%) (%)

Cutblock(C) 84.04 80.25 86.92 83.51 82.28 82.25 19.75 0.8125

Fire (F) 89.36 76.32 92.67 84.09 72.50 76.32 23.68 0.7436

Road (R) 88.30 40.00 95.71 61.87 58.82 40.00 60.00 0.4762

Wellsite (W) 82.98 72.73 86.11 79.14 61.54 72.73 27.27 0.6667
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Table 2: Confusion matrix of the predicted (rows) and observed (columns) disturbance types (values in %

area)

Category Cutblock(C) Fire (F) Road (R) | Wellsite (W) User’s
accuracy
Cutblock(C) 80.25 7.41 2.47 9.88 0.80
Fire (F) 23.68 76.32 0.00 0.00 0.76
Road (R) 8.00 4.00 40.00 48.00 0.40
Wellsite (W) 6.82 9.09 11.36 72.73 0.72
Producer’s 0.68 0.79 0.74 0.56
accuracy
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Table 3: Spatial disturbance attributes (Fragstats) and their predictive power derived from classification

tree analysis
Metrics name
DoD

Core (m?)
Area (m?)

CAl

Contig

Importance
100.00
70.12

22.58
22.17

12.46

Description

Date of Disturbance: STAARCH derived bi-monthly disturbance interval
Core Area: Area (m?): area within the patch that is further than the
specified depth-of-edge distance (here 30m) from the patch perimeter
Patch area: The area of the patch in m?

Core Area Index. Patch core area (m?) divided by total patch area (m?),
multiplied by 100 (to convert to a percentage); in other words, CAI
equals the percentage of a patch that is core area.

Contiguity Index: The average contiguity value for the cells in a patch
(i.e., sum of the cell values (=1 for the binary disturbance mask) divided
by the total number of pixels in the patch) minus 1, divided by the sum
of the template values (=1) minus 1. Note, 1 is subtracted from both the

numerator and denominator to confine the index to a range of 1.
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Figures

Figure 1: Bi-monthly disturbance map of the study area in southern Alberta derived from STAARCH on
the backdrop of a MODIS images. The colors correspond to the date of disturbance (DoD), spatial
coordinates are provided in UTM, Zone 11 (See Gaulton et al., 2011 for details)
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Figure 2: Spatial characteristics of the most important types of disturbances occurring in the study area.
Dogrib Creek Fire (2A), harvesting cut blocks (2B), well sites (2C) and roads (2D).
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Figure 3: Classification tree for classifying the type of disturbance from spatial area metrics of the disturbed areas derived from Fragstats (see
table 3 for legend and explanation)
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Misclassification = 28.00% Misclassification = 54,76% Misclassification = 16.67% Misclassification = 18.75%
Mode 14 Mode 15 Mode 28 Mode 29
month == 8.5 month = 8.5 CONTIG <= 0.89545 CONTIG = 0.89545
N =30 M=12 M =692 M=3
TYPE=C TYPE ='W TYPE=C TYPE=F
Misclassification = 46.67% Misclassification = 16.67% Misclassification = 13.04% Misclassification = 0.00%
Node 16 MNode 17
month == 5.5 maonth = 5.3
N=13 MN=17
TYPE =W TYPE=C
Misclassification = 38 46% Misclassification = 11.76%
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