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PRACTICAL ASPECTS OF THE LINE INTERSECT METHOD 

Abstract 
This report provides information and com­
ment on a number of practical aspects of 
the line intersect method, including speci­
fic equations for volume and weight for 
various sets of units; problems of orienta­
tion bias and sample layout; diameter-class 
limits and centres; use of the method to 
determine total length of pieces or net­
works and piece-length distribution; sample 
size, length of line, and precision; and 
others. The report is not a complete 
review of line intersect literature, nor does 
it present new theory. It does bring 
together in one place ideas on the practical 
application of the method that are present­
ly scattered throughout the literature. 

Introduction 
Since its original description by Warren and 
Olsen (I964), the line intersect method has 
been extensively used for measuring the 
quantity of wood lying on or near the 
ground. The original application was for 
the estimation of logging residue, further 
developed by Bailey (1970). Van Wagner 
U 968) and Brown (I971) described the 
method's use for measuring forest fuels. 
De Vries (I973) investigated its mathemati­
cal basis in depth, and Pickford and Hazard 
(I978) carried out a series of simulation 
studies. Also, many more specific uses 

Manuscript approved for publication: Sep­
tember 1980. 

C.E. Van Wagner is a research scientist, 
Petawawa National Forestry Institute. 

Resume 
Ce rapport presente des informations et 
des commentaires sur de multiples aspects 
pratiques de la methode d'echantillonnage 
lineaire, comme les equations specifiques 
du volume et du poids pour diverses series 
d'unites, les problemes relatifs aux ecarts 
d'orientation et au releve des echantillons, 
les limites et les centres des classes de 
diametre, l'application de la methode a fa 
determination de la longueur totale des 
parties ou des reseaux et la repartition de 
la longueur des parties, la taille des 
echantillons, la longueur de la ligne, la 
precision et bien d'autres encore. Ce 
document ne constitue pas une revue 
exhaustive de la documentation sur la 
methode d'echantillonnage lineaire ni n'in­
troduit une nouvelle theorie. II est plutot 
une compilation des idees qui se trouvent 
eparpillees dans les divers documents ex­
istants sur l'application pratique de cette 
methode. 

have been reported in the literature. 
Although the essence of the method's 
theory is simple, many questions arise in 
its use. The aim of this report is to 
provide a quick reference to a number of 
practical aspects of the line intersect 
method. It is not a conventional review of 
literature, nor does it introduce new 
theory. Instead, it is intended to fill the 
gap between theory and handbook and to 
promote the best possible understanding 
of the method. Detailed instructions for 
field procedure are listed by Brown (I 974) 
and McRae et al. (1979) and are not 
reproduced here. 

The author is grateful to Duncan 
A. MacLeod, Data Analysis and Systems 
Branch, Computing and Applied Statistics 
Directorate, Environment Canada, 
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Ottawa, for help with the mathematical 
and statistical parts of this report. 

I. Nature of the line intersect method 
The line intersect sample is best pictured 
as a strip sample of infinitesimal width. 
The data collected are the diameters of the 
wood pieces at their points of intersection 
with a sample line. The sample line is 
really a vertical plane, and the tally in 
effect collects a series of circular cross­
sectional areas from the intersected wood 
pieces. Of course the actual cross-sec­
tional areas are really ellipses of various 
shapes (except when the intersection is 
exactly at right angles), but, for conven­
ience, a factor derived from probability 
theory allows the areas to be summed as 
circles. The sum of cross-sectional areas is 
then divided by the length of the sample 
line; at this point the result is in terms of 
cross-sectional area per unit length of 
sample line. Multiplying both numerator 
and denominator by width converts the line 
sample into a strip sample (Van Wagner and 
Wilson 1976), and the result can then be 
quoted as volume per unit of ground area. 
Volume can in turn be readily converted to 
weight. The basic equation (Van Wagner 
1968) is 

(1) 

where V is volume per unit area, 
d is piece diameter at intersection, 
L is length of sample line. 

The quantity 1f2 /8 is the product of two 
terms: 1f /2, the probability factor men­
tioned above, and 'IT /4, the factor needed to 
convert d 2 into a circular area. This 
equation embodies three assumptions-that 
the pieces are randomly oriented, circular 
in cross section, and horizontal. These 
assumptions are dealt with again later. 

Multiplying by the wood density con­
verts volume to weight. The basic equation 
becomes 

(2) 

where W is weight per unit ground area, 
and 5 is density in units of weight per unit 
volume. 

One consequence of the strip sample 
concept is that the length of the pieces is 
seen tq be irrelevant; furthermore, each 
intersection is an even( to be tallied, 
regardless of any connection in the space 
on either side of the sample line. 

II. Specific equations for volume 
and weight 
The basic equations can be used directly 
only if all quantities are in compatible 
units. Generally this will not be so in 
practical use. Each specific equation will 
then have its own constant embodying 
1f2/8 plus conversion factors. 

The basic equation for weight de­
pends on the simple fact that volume 
times density equals weight. However, in 
practical application it is more convenient 
to use specific gravity in place of density. 
The equation constant must therefore 
include the density of water in the pertin­
ent units of weight and volume. General 
forms for the practical equations are 

V = (k/L) L d 2 
for volume per unit area, and 

W = (G k/L) L d 2 
for weight per unit area, 

(3) 

(4) 

where G is specific gravity, and k is 
equation constant. 

Table I lists k for some practical 
unit combinations. 

III. Piece orientation and sample 
layout 
The basic equation assumes that the 
pieces to be sampled are oriented at 
random, all angles being equally repre­
sented. In such an ideal population, one 
sample line in any direction will give an 
unbiased result. Orientation bias, in 
which the pieces are lined up more in one 
direction than in others, can result from 
windfall and some kinds of logging. It 
may be obvious or it may not. However, 
since orientation bias can be easily neu­
tralized, it makes sense to design the 
sample layout to insure against it.' This is 
done by running sample lines in more than 
one direction and averaging the results. 

Brown's (1974) method is to choose 
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Table 1. Equation constant k for some length, volume, 
and weight units in line intersect sampling 

Unit Combinations r 

d L V W 
k 

cm m m3/m 2 0.0001234 

cm m m3/ha 1.234 

cm m kg/m 2 0.1234 

cm m t/ha 1.234 

in ft ft 3/ft.2 0.008567 

in ft ft3/ac 373.3 

in ft 1b/ft 2 0. 5348 

in ft T/ac 11.65 

Note: Meaning of symbols-as in text. 

at random one of six directions at 30-
degree intervals at each line's starting 
point-a quite satisfactory approach. An 
alternative is to calculate the maximum 
possible bias that could result for various 
combinations of sample line directions, 
then to adopt a standard layout that re­
duces the maximum possible error below 
some reasonable limit. 

It can be shown (Van Wagner 1968) 
that the maximum possible error due to 
orientation bias is 21 percent for two 
sample lines at right angles but only 9 
percent for three lines at 60-degree angu­
lar intervals. These maximum errors are of 
course possible only when all pieces are 
aligned in the same direction, and even 
then only when the sample line pattern is 
oriented in one particular, least-favourable 
way-a most unlikely situation. Therefore, 
it appears that adequate insurance against 
orientation bias can be obtained with the 
three-direction pattern, which is just as 
easy to install as a two-direction pattern 
and does not re,,!uire a specific choice each 
time a sample line is started. The most 
convenient field layout is an equilateral 
triangle. 

Field efficiency in line intersect 
surveys requires that three things be 
minimized: 

a. The amount of walking apart from 
actual sampling 

b. The amount of measured distance in 
addition to the actual sample lines 

c. The number of starting points to be 
located 

Equilateral triangles have the following 
points in their favour: 

1. They can be of any size and number. 
2. Any single one will give a level of 

insurance against orientation bias that 
is obtainable only from a considerable 
number of randomly oriented sample 
lines. 

3. The starting points may be located 
without accurate surveying; i.e., the 
only measured distances necessary will 
be the sample lines themselves. 

4. The initial direction can be chosen at 
random or deliberately oriented to 
minimize an obvious orientation bias. 
See Figure 2 in Van Wagner (1968). 
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5. The triangle need not be closed exactly 
as long as the lengths of the sides are 
accurately measured. 

For field application the most con­
venient unbiased layout is a mechanical 
grid imposed on the map. Starting points 
can then be located on the ground by 
pacing or from identifiable landmarks. Or­
ientation of lines or triangles can be set 
beforehand or determined by some reason­
able method on the spot. 

IV. Piece tilt and ground slope 
The basic equation assumes horizontal 
pieces. If a piece is tilted, its probability 
of being intersected by the sample line is 
obviously lessened. If many pieces are 
tilted, there will be fewer intersections for 
a given volume of wood. The error will 
always be negative and amounts to I-cos h, 
where h is the angle of tilt from horizontal. 
The correction factor is therefore llcos h, 
or sec h. This error is very small at low 
angles, being only 0.4 percent at 5 degrees 
and still less than 10 percent at 25 degrees. 
It is most common where smaller pieces 
are attached to larger ones, as in fresh 
logging slash. 

. 

Whether the error is worth correcting 
for is a matter of judgement for any 
individual survey. An objective correction 
would require a subsample of piece-tilt 
angles. Brown and Roussopoulos (I974) 
have provided experimental average cor­
rection factors (i.e., secants) for logging 
slash of 10 conifer and 1 hardwood species. 
According to them, tilt errors are indeed 
significant, averaging about 20 percent in 
fresh logging slash (all sizes up to 7.6 cm) 
and 15 percent after one or more years. 
Their correction factors can be used di­
rectly for the species covered or they can 
be extrapolated with judgement to other 
similar species. 

With respect to sloping ground, there 
are obviously two bases for quoting the 
result of the line intersect survey, the 
choice depending on the ultimate use of the 
result: (1) actual ground area for, say, fire 
behaviour estimation, or (2) horizontal map 
area for, say, residue inventories. In any 
event, the sample line is most conveniently 
measured on the actual ground surface, a 

record being kept of slope angle. Then, if 
volume or weight per unit of horizontal 
area is desired, the result is multiplied, as 
it is for tilt, by the secant of the slope 
angle. Brown (1974) gives the formula in 
terms of ground slope: 

Correction factor = 

V""
1

-
+

-(':""
p -e -rc-�-� -6 -s -lo-

p-e
-:-)-2 (5) 

V. Piece taper and cross-sectional 
shape 
Because the line intersect method simply 
collects an unbiased sample of circular 
cross sections from the wood pieces lying 
on the ground, as if the sample line were a 
strip sample of infinitesimal width, one 
can intuitively judge that taper in the 
pieces will introduce no error (Van Wagner 
1968). This conclusion was well confirmed 
by Pickford and Hazard (1978) in their 
simulation studies. It can be stated safely 
that the line intersect result is unaffected 
by any kind of variation in diameter 
throughout the length of the pieces. 

It is obvious, however, that noncir­
cular cross section could introduce error 
if only one dimension were measured at 
each intersection. The simplest way to 
handle occasional obvious non circular 
cross section is to estimate one represen­
tative diameter from the average of two 
measurements. If the departure is seri­
ous, e.g., a rectangular rather than a 
circular cross section, the equation itself 
can be modified as per Brown (197l ). The 
degree to which noncircular cross section 
need be accounted for is very much a 
matter of judgement. 

VI. Diameter-class limits and centres 
Normally it is quite impractical and un­
necessary to tally the exact diameter of 
every piece crossed, especially when there 
is much small material. Intersections are 
therefore tallied by diameter classes. The 
number and spacing of classes depends on 
the purpose of the survey. If the interest 
is mainly in the amounts of small mate­
rial, then the larger material can be 
measured approximately or ignored. How­
ever, if a confident estimate of total 
volume or weight is desired, then the 



large material must have special attention. 
For example, a l -cm error in measuring a 
10-cm piece is the equivalent of 20 l-cm 
pieces. This means that diameter classes 
should not be widened as diameter increas­
es, but rather they should be kept at 
constant width. Above some point, class 
tallying can be replaced by individual piece 
measurement. 

The fire research group of the Cana­
dian Forestry Service has adopted the 
following diameter-class framework: 0-1, 
1-3, 3-5, 5-7, and 7+ cm. It is understood 
that this set of classes can be further 
subdivided if desired. If fine material is to 
be emphasized, then the lowest class can 
be split in two; if a very good total weight 
or volume is required, then the entire 0-7 
range can be sampled in I-cm classes. 
Pieces over 7 cm in diameter are common­
ly measured individually to the nearest 0.1 
centimetre. 

When the pieces are tallied in classes, 
some appropriate single diameter must be 
chosen to represent each class. The term 
rd2 in Equation 1 becomes r(n.D.2), 

• 1 1 
where n. is the number of interJections in 
diametef-class i , and D· is the represen­
tative class diameter. Theoretically, since 
d 2 is the property being summed, the class 
value must be the quadratic mean diameter 
(the square root of the average squared 
diameter) rather than the simple arithmet­
ic class centre or average diameter. 

There are two approaches to selec­
ting a quadratic mean diameter (QMD). 
One is by objective field sampling that 
reflects the natural diameter distribution 
within each class for the population in 
question (Brown and Roussopoulos 1974; 
Bevins 1978; Sackett 1980). This is a 
sensible and valid approach but does have 
two conditions: (1) field work must be done 
for each different tree species or kind of 
wood complex, and (2) the published QMDs 
apply to one set of diameter classes only 
and cannot be recalculated to fit another 
set (except perhaps from the original raw 
data). 

Another approach is to compute 
QMDs from the diameter frequency distri­
bution in the line intersect tally itseif,* 

* Van Wagner, C.E., journal note in prepa­
ration. 
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based on the assumption that the frequen­
cies follow a simple power law: 

b 'y = ax. (6) 

where y is number of intersections per 
unit length of sample line for a diameter 
class of one unit width, 

x is diameter, 
a and b are constants. 

The procedure then consists of plotting 
adjusted diameter frequencies over di­
ameter on double-log paper to determine 
the value of the exponent b, and applying 
the formula 

where x 
2 

and x 1 are the upper and lower 
limits of each diameter class. An arbi­
trary lower limit (say 0.1 or 0.2 cm) must 
be applied in place of zero to make the 
equation work for the lowest class. 

To determine the exponent b for a 
given line intersect survey, proceed as 
follows: 

1. If sample lines of different length 
were used for different diameter clas­
ses, divide each frequency by its line 
length and multiply by a common 
length. 

2. Further divide each frequency by its 
class width (i.e., x 

2 
- Xl). 

3. Plot each adjusted frequency over the 
midpoint of its class on double-log 
paper. 

4. Fit a straight line and estimate the 
logarithmic slope, b (always a negative 
value). Note that the constant a in 
Equation 6 is not required. 

5. If a single straight line is not possible, 
break the graph into any number of 
straight sections and determine b for 
each. 

Equation 7 has a pair of further 
limitations: it cannot be solved when b is 
exactly -l or -3. Special formulas could 
easily be written for these cases, but it is 
probably more convenient to keep one 
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general formula and avoid exact values of 
-l or -3. For example, values of either 
-2.99 or -3.01 will give satisfactory results 
when b = -3, and similarly for b = -1. 

This approach has the following ad­
vantages: (a) no extra field work is 
required, (b) QMDs are tailored to the 
given line intersect survey, and (c) the 
method may be applied to any desired set 
of diameter classes. 

As for accuracy, these calculated 
QMDs should always give better results 
than plain arithmetic class centres, and 
they may match the experimental QMDs 
fairly well. In any event, if accuracy in a 
line intersect survey is a serious considera­
tion, it makes more sense to tally in more 
and smaller diameter classes than to spend 
time on finer determination of quadratic 
mean diameters. 

vn. Length of a network or total piece 
length 
The line intersect theory can be readily 
adapted to measurement of the total length 
of a network or of unconnected elements 
within any defined area. Some examples 
are the length of a road or street system, 
the length of streams and rivers in a 
watershed, and the length of wood pieces 
per unit ground area. Matern (1964) pro­
vides the first example of this application, 
and Hildebrandt (1973) a later one. Length 
estimation is in fact simpler than volume 
estimation, but the basic principle is the 
same. Matern (1964) provides the equation: 

y = (lT/2) (niL) (8) 

where Y is network or element length per 
unit of sampled area, 

n is number of intersections with 
sample line or lines, 

L is length of sample line. 

This formula gives total length per unit of 
area equal to the squared unit used to 
measure the sample line length, L. A 
conversion factor may be required. For 
example, when L is measured in metres and 
length per hectare is desired, the right side 
of Equation 8 must be multiplied by 10 000. 
Multiplying Y by the area sampled then 
gives the total network or element length 

on the whole area. It is immaterial 
whether the intersected elements are 
straight or curved. 

r The possibility of nonrandom ele­
ment orientation must be accounted for, 
as in wood volume estimation. The 
simplest way is, as before, to run sample 
lines in at least three directions at equi­
angular intervals. Also, sloped ground 
should be accounted for (see section IV). 
Otherwise there are no sources of error in 
this application. If the elements are 
visible from the air, the work can obvious­
ly be done from photographs. 

VIll. Piece-length distribution 
The standard line intersect result (Equa­
tions 1, 2, 3) is obtained without reference 
to the lengths of the pieces intersected 
and gives no information about piece 
length or its distribution. The simple 
formula (Equation 8) in the previous sec­
tion yields total piece length per unit 
area, but again nothing about number of 
pieces or their lengths. If the distribution 
of piece lengths is desired as part of the 
result, then the lengths of the intersected 
pieces (or a subsample of them) must be 
measured. The survey tally can then be 
used to derive a length distribution. 

A set of piece-length classes should 
first be chosen. A piece-length distribu­
tion will then presumably be expressed as 
the number of pieces by length class per 
unit of sampled area. A problem of 
adjustment of the tallied length frequen­
cies arises, because the probability that 
any piece will be crossed is obviously 
proportional to its length; longer pieces 
will therefore appear disproportionately in 
the tally. This problem was described and 
dealt with by Bailey and Lefebvre (1971), 
who sUPl?ly the answer: "The distortion of 
( length J class frequencies is removed by 
using piece length as an ( inverse) weight­
ing factor." (When referring to this Bailey 
and Lefebvre publication, note that the 
bodies of Figures 1 and 2 were switched; 
the captions remain in place.) 

The number of pieces per unit area 
in length class i can be calculated from 
the total piece length, Y (see Equation 8), 
as follows: 

N i = (y fli ) (n i In) (9) 



where N. is number of pieces per unit area 
in length1class i, 

n. is number of tallied intersections 
in lengt� class i, 

. 

l
i is midpoint or average length of 

length class i, 
n is (as before) total number of 

intersections. 

This equation can be simplified by sub­
stituting for Y according to Equation 8: 

(1 a} 

where L is (as before) length of sample 
line. The inverse weighting factor men­
tioned above appears as l

i in both the 
above equations. As in section VII, a 
conversion factor for the chosen unit area 
may be required. The total number of 
pieces per unit area (N) is then simply 1: N 

i 
• 

Complete information may require 
stratification by diameter as well as length 
class. The above procedure can then be 
repeated for each diameter class. 

IX. Size and precision of sample 
The validity of the line intersect result, in 
the sense of accuracy, is essentially guar­
anteed by the basic theory, only subject to 
proper neutralization of the potential bi­
ases that can affect it, namely (1) nonran­
dom piece orientation, (2) piece tilt, (3) 
noncircular cross section, and (4) skewed 
distribution within diameter classes. 
These have been dealt with in previous 
sections. 

The precision of the result, on the 
other hand, as in all sampling procedures, 
depends upon the size of the sample and 
the variability of the material. For credi­
bility, the line intersect result must be 
accompanied by a measure of its precision. 
Probably the most practical and significant 
measure is the standard error, that is, the 
standard deviation of possible volume esti­
mates about the true value. It can be 
quoted either quantitatively or as a percent 
of the result, depending on the end use of 
the information. 

The concept of standard error in the 
line intersect method is, however, not quite 
obvious. This is because the method 
measures an areal attribute rather than 
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some property of a population of discrete 
units, for example, a set of tree diame­
ters. ,. In the line intersect method, the 
total sample is clearly tne total length of 
line ta11ied, but there is no identifiable 
discrete unit. The individual piece inter­
section does not qualify, since there is no 
identifiable ground area associated with 
it. As it happens, this difficulty, although 
a little obscure, is easily overcome by 
dividing the whole sample into sections 
and computing the standard error of their 
average result. The question is how best 
to do this. 

De Vries (1973) analysed the mathe­
matics of the line intersect method in 
depth, including the estimation of preci­
sion, and Pickford and Hazard (1978) 
reported extensive simulation studies 
leading to several conclusions about preci­
sion. Drawing on these references plus 
other experience, one may list the follow­
ing principles: 

1. For any given situation, the level of 
precision depends primarily on the 
total size of the sample. 

2. Theoretically, the size of the area to 
be sampled is irrelevant; it is the 
variability of the material being sam­
pled that counts. 

3. It follows that for a given total line 
length the number of sections is, with­
in limits, immaterial. For example, 10 
sections of 100 m each should provide 
the same standard error as 100 of 10 m 
each. 

4. The sections may be either physically 
separate or parts of a longer contin­
uous line. 

5. Precision is also related to concen­
tration, that is, to the number of 
intersections per unit length of sample 
line. Thus, the smaller the diameter 
class, the more numerous the pieces, 
and the shorter the sample line needed 
to achieve a given precision. Both 
Brown (1974) and McCrae et al. (1979) 
specify that for best efficiency, only 
the largest diameter class be tallied on 
the whole of each sample line or 
triangle leg; the proportion of line 
used for each class decreases with 
diameter. 
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These principles require a few practical 
comments. While the total sample size 
(point 2) is not theoretically dependent on 
the area to be sampled, it may nevertheless 
seem unrealistic to scatter the sample 
units too thinly over a large area. Thus, 
for general credibility, McCrae et al. 
(1979) recommend at least one equilateral 
triangle of 30-m sides for every 20 ha of 
sampled area. 

With respect to the minimum number 
of sections for a given total sample (point 
3), the literature is not quite clear on the 
pertinent theory. Some empirical simula­
tions at this institute suggest that the 
number of sections should not be reduced 
below a certain minimum. If they are, 
instability in the standard error may result; 
in other words, the chance of getting a 
standard error close to the true standard 
error may decrease. Until someone settles 
this question, it seems reasonable to sug­
gest that the standard error be based on 
not less than 10, and preferably 20, sec­
tions. These may be individual lines or 
sections of a line or legs of equilateral 
triangles. To reiterate for clarity, this 
consideration applies only to the minimum 
number of sections within a given total 
sample; that is, if the number of sections is 
halved, the implication is that their indi­
vidual length is doubled. Apart from this 
possible limitation on minimum number, to 
quote Pickford and Hazard (1978), "the 
product of number of lines times line 
length is approximately constant for speci­
fied levels of precision". (See their Table 
12 and Figure 1.) 

A practical aspect of variability 
(points 3 and 1+) is scale. A t its smallest 
scale, variability is absorbed into the indi­
vidual sections of the total sample. How­
ever, when abnormal piece densities appear 
in large enough patches, they may domin­
ate individual sample sections or even 
affect two or more adjacent sections. 
When this happens, an important principle 
of random sampling is violated- that each 
sample unit should be independent of every 
other one. As the scale of patchiness 
increases further, complete stratification 
into separate estimates may be indicated. 
This problem is one of judgement according 
to end use. Good estimates of fire behav-

iour may require a stratification of area 
according to density, whereas an estimate 
of useable logging residue may not. 

� The various poh:}ts affecting the size 
and number of individual line sections 
suggest the need for some flexibility. 
Thus, if a standard layout produces an 
obvious lack of independence between 
sections, these can be lengthened or 
placed farther apart. If the separate legs 
of equilateral triangles do not seem inde­
pendent enough, the triangle can be en­
larged, or else the whole triangle consid­
ered for statistical purposes as one unit. 

The starting point for choice of 
total sample length is the specified degree 
of precision. Then, if the variability of 
the material is not roughly known, a 
preliminary uniformity trial may be nec­
essary to establish a tentative estimate of 
it. The choice of degree of precision is 
critical, because the square of sample size 
is inversely proportional to the allowable 
error, a universal sampling principle well 
illustrated for the line intersect method 
by Pickford and Hazard (1978, Table 12). 
Thus, to double the precision (that is, 
halve the allowable standard error) would 
require four times the sample. 

The choice of degree of precision 
should be made only after an objective 
look at the value of the volume estimate, 
because unnecessary precision is costly. 
It is also worth noting that when individ­
ual sample lines or triangles are laid out 
on a grid system, the degree of precision 
is generally considered somewhat better 
(to an indeterminate degree) than an 
equivalent sample taken by random loca­
tion. A standard error of ± 1 ° percent of 
the estimate would probably suffice for 
any end use, and ± 20 percent for many. 
(Quantitative quotation of standard error 
may be preferable.) 

The standard error of the line inter­
sect volume estimate may be computed as 
follows (drawing on any standard statistics 
text): 

s = s/'Vn (11) 
x 

where s is standard error in units of x 
volume/unit area, 



n is number of sections in the total 
sample, and 

s is standard deviation, given by 

_ [EX 2_ (EX) 2/n J 1I2 s - 1 n- (12) 

where X is individual section volume. The 
correction for small popUlations is not 
needed here, the potential number of line 
samples on any area being presumably 
infinite. The probability is then 67 percent 
that the true average volume per unit area 
falls within the range X ± s _, where X is 

x 
the mean of the individual Xs. The 95 
percent confidence limits, as used by Pick­
ford and _Hazard (1978), comprise a range 
of about X ± 2 s • 

x 

X. Name of method 
The name used here is "line intersect 
method," following the original paper of 
Warren and Olsen (1964) on measurement 
of logging residue, and this name has been 
adopted by all authors working in tha t 
application. Van Wagner (1968) used the 
same name with respect to forest fuel 
measurement. It is, of course, understood 
that the line intersect sample line is really 
a vertical plane extending as high above 
ground as necessary to include all material 
in direct or indirect contact with the 
ground. Brown (1971) developed a variation 
of this concept in which sample planes 
could be oriented if desired at angles other 
than vertical; he called it the "planar 
intersect method." He subsequently includ­
ed this method in his Handbook for Inven­
tor in Downed Wood Material (Brown 
1974 , which has been used widely in forest 
fuel measurement, especially in the United 
States. A question arises as to the differ­
ence, if any, between the line and planar 
methods. 

The essential criteria for distinguish­
ing field survey methods should presumably 
be (a) the basic theory and equation, (b) the 
information collected, and (c) the tallying 
rules. Appeal to these criteria shows that 
the two methods are indeed one and the 
same whenever the planar method· deals 
with vertical planes only. In Brown's (1974) 
handbook, the sampling is in fact carried 

9 

out with vertical planes. Without any 
suggestion that anyone should change the 
name by which he calls the method, it 
woul6 help if users appreciated that, for 
purposes of measuring wood volume on the 
ground, the so-called line and planar 
intersect methods are identical. 

The field layout itself is simply a 
matter of choosing the length and number 
of lines and their arrangement on the 
ground, all of which can be varied endless­
ly according to judgement and experience. 

XI. Choice of diameter 
The line intersect sample can be looked on 
as a strip sample of infinitesimal width 
(see section I) in which piece diameter is 
measured at the point of intersection. 
Alternately, it can be used as a device for 
selecting pieces whose diameter will be 
measured either at midpoint or at both 
ends. Piece volume would then be com­
puted by the Huber or Smalian formulas. 
Several authors (e.g., Bailey 1970, Menard 
and Dionne 1972) have used the Smalian 
formula with both-end diameters to con­
vert their logging residue estimates to 
standard log scale volumes. De Vries 
(1973) based part of his analysis on mid­
point diameters and the Huber volume 
formula. The primary point to be made 
here is that both the Huber and Smalian 
formulas are unbiased only if the pieces 
are cylinders or paraboloids. It follows 
that the measurement of diameter at the 
point of intersection gives the only esti­
mate of volume per unit area that is free 
of possible bias if the pieces do not match 
these shapes (Van Wagner and Wilson, 
1976). It follows further that a line 
intersect survey based on intersection 
diameters, and designed so as to be free 
of other potential biases listed earlier, 
constitutes the primary standard for 
total-volume methods in which the mate­
rial is left in place. A better primary 
standard would be possible only by using a 
plot method in which all piece volumes 
were determined by immersion in a cali­
brated water tank. Furthermore, not only 
is the volume determined from inter­
section diameters free from any shape 
bias, all experience shows that intersec­
tion diameters are by far the fastest to 
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obtain (Bailey 1970, Howard and Ward 
1972, Menard and Dionne 1972, Van Wagner 
and Wilson 1976); this means that a much 
larger sample can be obtained for the same 
effort. For special purposes, such as 
estimation of length distribution or butt 
rot, it may be necessary to visit the ends of 
some tallied pieces. 

Conclusion 
The theoretical essence of the line inter­
sect method is simple (see Equation 1), but 
many practical questions arise in its use. 
Some of these refer to potential sources of 
bias or error, others to the efficiency of 
field layout and the precision of the result. 
Potential sources of error are as follows: 

1. Nonrandom piece orientation 
(section III) 

2. Piece tilt from horizontal (section IV) 
3. Noncircular cross section (section V) 
4. Where diameters are tallied in classes, 

nonuniform distribution of diameters 
within classes (section vI) 

Provided these error sources are neu­
tralized or accounted for, the line intersect 
method yields a valid result that can be 
used as a primary standard for methods of 
measuring wood quantity on the ground. 

Other practical questions include 
what to do about the following: 

1. Field layout (section III) 
2. Ground slope (section IV) 
3. Diameter-class limits (section VI) 
4. Sample size and precision (section IX) 

The precision of the final result depends 
mainly on the total length of sample line 
run, but also on the diameter-class struc­
ture used in the tally. When total volume 
is desired, large pieces should be measured 
accurately or in narrow classes. 

The line intersect method, simply by 
the counting of intersections, can be used 
to determine the total length of pieces or 
networks within the sampled area (section 
VII). Or it may also be used, by tallying the 
lengths of the intersected pieces (or a 
subsample of them), to find the piece­
length distribution as the number of pieces 
by length and diameter classes per unit of 

sampled area (section VIII). 
Finally, all things considered, it is 

apparent that a well-designed line inter­
sett survey provides;" for any chosen level 
of precision, the fastest and most reliable 
method of measuring wood quantity on the 
ground. 
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