Canadian Forest Service Publications

Distribution of leaf orientations in six conifer species. 2001. Barclay, H.J. Canadian Journal of Botany 79: 389-397.

Year: 2001

Issued by: Pacific Forestry Centre

Catalog ID: 18132

Language: English

CFS Availability: Order paper copy (free)

Mark record

Abstract

Leaf angle distributions are important in assessing both the flexibility of a plant's response to differing daily and seasonal sun angles and also the variability in the proportion of total leaf area visible in remotely sensed images. Leaf angle distributions are presented for six conifer species, Abies grandis (Dougl. ex D. Don) Lindl., Thuja plicata Donn. ex D. Don, Tsuga heterophylla (Raf.) Sarg., Pseudotsuga menziesii (Mirb.) Franco, Picea sitchensis (Bong.) Carr. and Pinus contorta Dougl. ex Loud. var. latifolia. The leaf angles were calculated by measuring four foliar quantities, and then the distributions of leaf angles are cast in three forms: distributions of (i) the angle of the long axis of the leaf from the vertical for the range 0-180°; (ii) the angle of the long axis of the leaf for the range 0-90°; and (iii) the angle of the plane of the leaf for the range 0-90°. Each of these are fit to the ellipsoidal distribution to test the hypothesis that leaf angles in conifers are sufficiently random to fit the ellipsoidal distribution. The fit was generally better for planar angles and for longitudinal angles between 0° and 90° than for longitudinal angles between 0°and 180°. The fit was also better for Tsuga heterophylla, Pseudotsuga menziesii, Picea sitchensis, and Pinus contorta than for Abies grandis and Thuja plicata. This is probably because Abies and Thuja are more shade tolerant than the other species, and so the leaves in Abies and Thuja are preferentially oriented near the horizontal and are much less random than for the other species. Comparisons of distributions on individual twigs, whole branches, entire trees, and groups of trees were done to test the hypothesis that angle distributions will depend on scale, and these comparisons indicated that the apparent randomness and goodness-of-fit increased on passing to each larger unit (twigs up to groups of trees).