Canadian Forest Service Publications

Insect-host relationships influencing disturbance by the spruce budworm in a boreal mixedwood forest. 2004. Nealis, V.G.; Régnière, J. Canadian Journal of Forest Research 34: 1870-1882.

Year: 2004

Issued by: Pacific Forestry Centre

Catalog ID: 24987

Language: English

Availability: Order paper copy (free), PDF (download)

Mark record


Demographic data from a 15-year outbreak of the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae), in a boreal mixedwood forest in Ontario, Canada, are used to interpret stand-level ecological disturbance in terms of susceptibility and vulnerability (mortality) of balsam fir (Abies balsamea (L.) Mill.), white spruce (Picea glauca (Moench) Voss), and black spruce (Picea mariana (Mill.) BSP). All three host-tree species are highly susceptible for oviposition by the spruce budworm and all are suitable for completion of the budworm life cycle. Host-related differences in susceptibility arise from the degree of synchrony between spruce budworm phenology during the feeding stages and host-tree phenology. Spruce budworm density was highest on white spruce throughout the budworm’s life cycle and over the course of the outbreak, but more rapid flushing and growth of current-year buds in white spruce reduced damage relative to that on balsam fir. Conversely, later flushing of current-year buds on black spruce led to a reduction in budworm density early in the season and a corresponding reduction in defoliation. The combination of high budworm densities and severe defoliation caused mortality first on balsam fir. By the end of the outbreak, 89% of the balsam fir component >10 cm DBH was eliminated compared with 49% of the white spruce in the same size class. The lower susceptibility of black spruce resulted in survival of all but the smallest size classes of that species. Nonhost species such as trembling aspen (Populus tremuloides Michx.) nearly doubled their basal area during the outbreak. The results link processes inherent in the insect–host relationship with the population ecology of the insect and the disturbance ecology of the forest.