Canadian Forest Service Publications

A plane intersect method for estimating fine root productivity of trees from minirhizotron images. 2004. Bernier, P.Y.; Robitaille, G. Plant Soil. 265: 165-173.

Year: 2004

Available from: Laurentian Forestry Centre

Catalog ID: 25708

Language: English

CFS Availability: PDF (request by e-mail)


The advent of minirhizotrons more than a decade ago has made the careful and widespread study of fine root dynamics of trees possible. However, to this day, the estimation of fine root productivity in terms of mass production per unit of ground surface from the minirhizotron data remains hampered by the difficulty in transforming images of roots captured along a two-dimensional plane into estimates of root volume or mass within a soil volume. In this work, we propose that the date of fine root appearance and the diameter of fine roots are the most robust variables that can be obtained from minirhizotron measurements of tree roots and that these two variables should be the basis of productivity estimates. The method proposed for estimating fine root productivity expands the line intersect method of Van Wagner (1968) into a plane intersect method that permits, with the appropriate volumetric transformations and corrections for tube and slope angles, the estimation of fine root productivity per unit ground area for specific periods. Examples of calculations are presented for two datasets obtained within two different forested sites, as well as a comparison with a methodology based on camera depth-of-view. The main weakness of the plane intersect method is the assumption that all fine root segments are independent. The correction for the fraction of coarse particles also creates uncertainty in the final estimate.

Date modified: