Canadian Forest Service Publications

Dynamic histone acetylation of late embryonic genes during seed germination. 2005. Tai, H.; Tai, G.C.C.; Beardmore, T. Plant Molecular Biology 59: 909-925.

Year: 2005

Issued by: Atlantic Forestry Centre

Catalog ID: 25893

Language: English

CFS Availability: Order paper copy (free)

Mark record

Abstract

Histone acetylation is involved in the regulation of gene expression in plants and eukaryotes. Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl groups from histones, which is associated with the repression of gene expression. To study the role of histone acetylation in the regulation of gene expression during seed germination, trichostatin A (TSA), a specific inhibitor of histone deacetylase, was used to treat imbibing Arabidopsis thaliana seeds. GeneChip arrays were used to show that TSA induces up-regulation of 45 genes and down-regulation of 27 genes during seed germination. Eight TSA-up-regulated genes were selected for further analysis---RAB18, RD29B, ATEM1, HSP70, and four late embryogenesis abundant protein genes (LEA). A gene expression time course shows that these eight genes are expressed at high levels in the dry seed and repressed upon seed imbibition at an exponential rate. In the presence of TSA, the onset of repression of the eight genes is not affected but the final level of repressed expression is elevated. Chromatin immunoprecipitation and HDAC assays show that there is a transient histone deacetylation event during seed germination at 1 day after imbibition, which serves as a key developmental signal that affects the repression of the eight genes.