Canadian Forest Service Publications

Phenological differences in Tasseled Cap indices improve deciduous forest classification. 2002. Dymond, C.C.; Mladenoff, D.J.; Radeloff, V.C. Remote Sensing of Environment 80: 460-472.

Year: 2002

Issued by: Northern Forestry Centre

Catalog ID: 25988

Language: English

Availability: Order paper copy (free), PDF (request by e-mail)

Mark record


Remote sensing needs to clarify the strengths of different methods so they can be consistently applied in forest management and ecology. Both the use of phenological information in satellite imagery and the use of vegetation indices have independently improved classifications of north temperate forests. Combining these sources of information in change detection has been effective for land cover classifications at the continental scale based on Advanced Very High Resolution Radiometer (AVHRR) imagery. Our objective is to test if using vegetation indices and change analysis of multiseasonal imagery can also improve the classification accuracy of deciduous forests at the landscape scale. We used Landsat Thematic Mapper (TM) scenes that corresponded to Populus spp. leaf-on and Quercus spp. leaf-off (May), peak summer (August), Acer spp. peak color (September), Acer spp. and Populus spp. leaf-off (October). Input data files derived from the imagery were: (1) TM Bands 3, 4, and 5 from all dates; (2) Normalized Difference Vegetation Index (NDVI) from all dates; (3) Tasseled Cap brightness, greenness, and wetness (BGW) from all dates; (4) difference in TM Bands 3, 4, and 5 from one date to the next; (5) difference in NDVI from one date to the next; and (6) difference in BGW from one date to the next. The overall kappa statistics (KHAT) for the aforementioned classifications of deciduous genera were 0.48, 0.36, 0.33, 0.38, 0.26, 0.43, respectively. The highest accuracies occurred from TM Bands 3, 4, and 5 (61.0% for deciduous genera, 67.8% for all classes) or from the difference in BGW (61.0% for deciduous genera, 67.8% for all classes). However, the difference in Tasseled Cap classification more accurately separated deciduous shrubs and harvested stands from closed canopy forest. Our results indicate that phenological change of forest is most accurately captured by combining image differencing and Tasseled Cap indices.