Canadian Forest Service Publications

Diversity and function of fungi in peatlands: A carbon cycling perspective. 2006. Thormann, M.N. Canadian Journal of Soil Science 86(2): 281-293.

Year: 2006

Issued by: Northern Forestry Centre

Catalog ID: 26118

Language: English

Availability: PDF (request by e-mail)

Mark record


Peatlands are a dominant landform in the northern hemisphere, accumulating carbon in the form of peat due to an imbalance between decomposition and plant production rates. Decomposer (saprobes) and mycorrhizal fungi significantly influence carbon dynamics by degrading organic matter via the synthesis of extracellular enzymes. As organic matter decomposes, litter quality variables figure most prominently in the succession of fungi. Hence, litters composed primarily of complex polymers decompose very slowly. Surprisingly, recalcitrant polymer degraders (mostly basidiomycetes) are rarely isolated from peat, which may explain the accumulation of complex polymers in peat profiles. While enzymatic profiles of mycorrhizal fungi and other root endophytes may be more limited compared with saprobes, many of these fungi can degrade polymers of varying complexity as well and hence may also be significant decomposers of organic matter. To date, anamorphic ascomycetes and zygomycetes are the most frequently isolated fungi from peatlands (63 and 10% of all taxa, respectively), and chytridiomycetes, teleomorphic ascomycetes, and basidiomycetes appear to be less common (11% of all taxa). The remaining 16% of taxa remain unidentified or are sterile taxa. How disturbances affect peatland microbial communities and their roles is virtually unknown. This aspect of peatland microbial ecology requires immediate attention. The objective of this paper is to review the current state of knowledge of the diversity of fungi and their roles in carbon cycling dynamics in peatlands.