Canadian Forest Service Publications

Soil physical property changes at the North American Long-Term Soil Productivity study sites: 1 and 5 years after compaction. 2006. Page-Dumroese, D.S.; Jurgensen, M.F.; Tiarks, A.E.; Ponder, F., Jr.; Sanchez, F.G.; Fleming, R.L.; Kranabetter, J.M.; Powers, R.F.; Stone, D.M.; Elioff, J.D.; Scott, D.A. Canadian Journal of Forest Research 36: 551-564.

Year: 2006

Issued by: Great Lakes Forestry Centre

Catalog ID: 26167

Language: English

Availability: PDF (request by e-mail)

Mark record


The impact of forest management operations on soil physical properties is important to understand, since management can significantly change site productivity by altering root growth potential, water infiltration and soil erosion, and water and nutrient availability. We studied soil bulk density and strength changes as indicators of soil compaction before harvesting and 1 and 5 years after harvest and site treatment on 12 of the North American Long-Term Soil Productivity sites. Severe soil compaction treatments approached root-limiting bulk densities for each soil texture, while moderate compaction levels were between severe and preharvest values. Immediately after harvesting, soil bulk density on the severely compacted plots ranged from 1% less than to 58% higher than preharvest levels across all sites. Soil compaction increases were noticeable to a depth of 30 cm. After 5 years, bulk density recovery on coarse-textured soils was evident in the surface (0–10 cm) soil, but recovery was less in the subsoil (10–30 cm depth); fine-textured soils exhibited little recovery. When measured as a percentage, initial bulk density increases were greater on fine-textured soils than on coarser-textured soils and were mainly due to higher initial bulk density values in coarse-textured soils. Development of soil monitoring methods applicable to all soil types may not be appropriate, and more site-specific techniques may be needed for soil monitoring after disturbance.