Canadian Forest Service Publications

Potential effects of climate change on the growth of lodgepole pine across diameter size classes and ecological regions. 2008. Chhin, S.; Hogg, E.H.; Lieffers, V.J.; Huang, S. Forest Ecology and Management 256(10): 1692-1703.

Year: 2008

Issued by: Northern Forestry Centre

Catalog ID: 28917

Language: English

Availability: Order paper copy (free), PDF (request by e-mail)

Mark record


We examined 65 lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) sites in Alberta using a dendrochronological approach in order to examine the relationships between climate and growth of lodgepole pine across elevational ecoregions and diameter size classes. The 4 elevational ecoregions sampled included the Boreal Highlands (BH: 13 sites); the Foothills (FH: 36 sites); a grouping of the montane and subalpine zones of the southern Rocky Mountains (RM: 12 sites); and the montane zone of the Cypress Hills (CH: 4 sites). The first diameter size class was comprised of the three largest (top) diameter trees at each site. The tree list of each plot was ranked, then divided into three groups of equal basal area and the tree at the midpoint of each group (small, medium, and large) was selected for the other three size classes. Annual growth in basal area of lodgepole pine was generally sensitive to heat and moisture stress in late summer of the previous year, the degree of winter harshness, and the timing of the start of the growing season. Growth was inhibited by low temperature in all winter months at the most northern BH sites which had the coldest winters, but this effect was interrupted in some of the midwinter months in the more southerly sites in the RM, and we postulated this was due to the damaging influences of Chinook winds. Interannual growth patterns were strongly correlated between top diameter trees and the other classes, and trees of all diameter classes generally responded to climate in the same way, which indicated that it is sufficient to sample only the largest diameter trees in a stand to provide insight into growth–climate relationships. The forecasted growth estimates indicate that future climate warming will negatively impact the productivity of lodgepole pine in the FH, the heart of lodgepole distribution and productivity in Alberta.