Canadian Forest Service Publications

Conservation of forest-dwelling arthropod species: simultaneous management of many small and heterogeneous risks. 2008. Spence, J.R.; Langor, D.W.; Jacobs, J.; Work, T.T.; Volney, W.J.A. Canadian Entomologist 140(4): 510-525.

Year: 2008

Issued by: Northern Forestry Centre

Catalog ID: 28961

Language: English

Availability: Order paper copy (free), PDF (request by e-mail)

Mark record


The Canadian insect fauna is too inadequately understood to support well-informed assessments about its conservation status; however, the foregoing collection of synthetic papers illustrates potential threats from industrial forestry. Loss of forest species and dramatic changes in forest insect assemblages driven by forestry activities are well illustrated by studies from places where industrial forest management has been more intensive or of longer duration. Improved understanding of how arthropod species are coupled to habitats, especially microhabitats, appears to be central to progress toward their conservation. Studies of arthropods conducted at the species level are most relevant for applied conservation purposes, because only species-level work that is well documented with voucher specimens provides adequate comparative data to document faunal change. Although taxonomic infrastructure required to support such work is seriously under-resourced in Canada, entomologists can help themselves by producing useful modern resources for species identification, by undertaking collaborative biodiversity work that minimizes the split between taxonomists and ecologists, and by supporting incentives for work at the species level. Securing the future of arthropod diversity in Canadian forests through effective policy will require sound regionally defined bases for whole-fauna conservation that mesh with broader land-use planning. Building these will require a practical understanding of how “ecosite”-classification systems relate to arthropod diversity, accurate inventories of the predisturbance forest fauna in all regions, and development of sound monitoring plans designed to both detect faunal change efficiently and identify its drivers. Such monitoring plans should include both baseline inventories and monitoring of designated control areas. In addition, effective biomonitoring efforts will facilitate the development of suites of arthropod indicators, accommodate both seasonal (especially phenological) and annual variation, clarify the relationship between cost-effective samples and reality, and ensure adequate consideration of “rare” species. Return on investment in monitoring will depend on effective preplanned linkage to policy development that can respond to drivers of faunal change in a way that effectively addresses undesired changes.