Canadian Forest Service Publications

Characterizing the forest fragmentation of Canada’s national parks. 2009. Soverel, N.O.; Coops, N.C.; White, J.C.; Wulder, M.A. Environmental Monitoring and Assessment 164: 481-499.

Year: 2009

Available from: Pacific Forestry Centre

Catalog ID: 31551

Language: English

CFS Availability: Order paper copy (free), PDF (download)

Available from the Journal's Web site.
DOI: 10.1007/s10661-009-0908-7

† This site may require a fee.


Characterizing the amount and configuration of forests can provide insights into habitat quality, biodiversity, and land use. The establishment of protected areas can be a mechanism for maintaining large, contiguous areas of forests, and the loss and fragmentation of forest habitat is a potential threat to Canada’s national park system. Using the Earth Observation for Sustainable Development of Forests (EOSD) land cover product (EOSD LC 2000), we characterize the circa 2000 forest patterns in 26 of Canada’s national parks and compare these to forest patterns in the ecological units surrounding these parks, referred to as the greater park ecosystem (GPE). Five landscape pattern metrics were analyzed: number of forest patches, mean forest patch size (hectare), standard deviation of forest patch size (hectare), mean forest patch perimeter-to-area ratio (meters per hectare), and edge density of forest patches (meters per hectare). An assumption is often made that forests within park boundaries are less fragmented than the surrounding GPE, as indicated by fewer forest patches, a larger mean forest patch size, less variability in forest patch size, a lower perimeter-to-area ratio, and lower forest edge density. Of the 26 national parks we analyzed, 58% had significantly fewer patches, 46% had a significantly larger mean forest patch size (23% were not significantly different), and 46% had a significantly smaller standard deviation of forest patch size (31% were not significantly different), relative to their GPEs. For forest patch perimeter-to-area ratio and forest edge density, equal proportions of parks had values that were significantly larger or smaller than their respective GPEs and no clear trend emerged. In summary, all the national parks we analyzed, with the exception of the Georgian Bay Islands, were found to be significantly different from their corresponding GPE for at least one of the five metrics assessed, and 50% of the 26 parks were significantly different from their respective GPEs for all of the metrics assessed. The EOSD LC 2000 provides a heretofore unavailable dataset for characterizing broad trends in forest fragmentation in Canada’s national parks and in their surrounding GPEs. The interpretation of forest fragmentation metrics must be guided by the underlying land cover context, as many forested ecosystems in Canada are naturally fragmented due to wetlands and topography. Furthermore, interpretation must also consider the management context, as some parks are designed to preserve fragmented habitats. An analysis of forest pattern such as that described herein provides a baseline, from which changes in fragmentation patterns over time could be monitored, enabled by earth observation data.

Date modified: