Canadian Forest Service Publications

A new design for sampling with adaptive sample plots. 2011. Yang, H.; Kleinn, C.; Fehrmann, L.; Tang, S.; Magnussen, S. Environmental and Ecological Statistics 18(2): 223-237.

Year: 2011

Available from: Pacific Forestry Centre

Catalog ID: 32867

Language: English

CFS Availability: Not available through the CFS (click for more information).

Available from the Journal's Web site.
DOI: 10.1007/s10651-009-0129-9

† This site may require a fee.

Abstract

Adaptive cluster sampling (ACS) is a sampling technique for sampling rare and geographically clustered populations. Aiming to enhance the practicability of ACS while maintaining some of its major characteristics, an adaptive sample plot design is introduced in this study which facilitates field work compared to “standard” ACS. The plot design is based on a conditional plot expansion: a larger plot (by a pre-defined plot size factor) is installed at a sample point instead of the smaller initial plot if a pre-defined condition is fulfilled. This study provides insight to the statistical performance of the proposed adaptive plot design. A design-unbiased estimator is presented and used on six artificial and one real tree position maps to estimate density (number of objects per ha). The performance in terms of coefficient of variation is compared to the non-adaptive alternative without a conditional expansion of plot size. The adaptive plot design was superior in all cases but the improvement depends on (1) the structure of the sampled population, (2) the plot size factor and (3) the critical value (the minimum number of objects triggering an expansion). For some spatial arrangements the improvement is relatively small. The adaptive design may be particularly attractive for sampling in rare and compactly clustered populations with an appropriately chosen plot size factor.

Date modified: