Canadian Forest Service Publications

A cysteine-rich antimicrobial peptide from Pinus monticola (PmAMP1) confers resistance to multiple fungal pathogens in canola (Brassica napus). 2012. Verma, S.S.; Yajima, W.R.; Rahman, M.H.; Shah, S.; Liu, J.-J.; Ekramoddoullah, A.K.M.; Kav, N.N.V. Plant Molecular Biology 79: 61-74.

Year: 2012

Available from: Pacific Forestry Centre

Catalog ID: 33756

Language: English

CFS Availability: Not available through the CFS (click for more information).

Available from the Journal's Web site.
DOI: 10.1007/s11103-012-9895-0

† This site may require a fee.

Abstract

Canola (Brassica napus), an agriculturally important oilseed crop, can be significantly affected by diseases such as sclerotinia stem rot, blackleg, and alternaria black spot resulting in significant loss of crop productivity and quality. Cysteine-rich antimicrobial peptides isolated from plants have emerged as a potential resource for protection of plants against phytopathogens. Here we report the significance of an antimicrobial peptide, PmAMP1, isolated from western white pine (Pinus monticola), in providing canola with resistance against multiple phytopathogenic fungi. The cDNA encoding PmAMP1 was successfully incorporated into the genome of B. napus, and it’s in planta expression conferred greater protection against Alternaria brassicae, Leptosphaeria maculans and Sclerotinia sclerotiorum. In vitro experiments with proteins extracted from transgenic canola expressing Pm-AMP1 demonstrated its inhibitory activity by reducing growth of fungal hyphae. In addition, the in vitro synthesized peptide also inhibited the growth of the fungi. These results demonstrate that generating transgenic crops expressing PmAMP1 may be an effective and versatile method to protect susceptible crops against multiple phytopathogens.

Date modified: