Canadian Forest Service Publications

Airborne laser scanning and digital stereo imagery measures of forest structure: comparative results and implications to forest mapping and inventory update. 2013. Vastaranta, M.; Wulder, M.A.; White, J.C.; Pekkarinen, A.; Tuominen, S.; Ginzler, C.; Kankare, V.; Holopainen, M.; Hyyppä, J.; Hyyppä, H. Canadian Journal of Remote Sensing 39(5):1-14

Year: 2013

Issued by: Pacific Forestry Centre

Catalog ID: 35274

Language: English

Availability: PDF (request by e-mail)

Available from the Journal's Web site.
DOI: 10.5589/m13-046

† This site may require a fee

Mark record


Airborne laser scanning (ALS) has demonstrated utility for forestry applications and has renewed interest in other forms of remotely sensed data, especially those that capture three-dimensional (3-D) forest characteristics. One such data source results from the advanced processing of high spatial resolution digital stereo imagery (DSI) to generate 3-D point clouds. From the derived point cloud, a digital surface model and forest vertical information with similarities to ALS can be generated. A key consideration is that when developing forestry related products such as a canopy height model (CHM), a high spatial resolution digital terrain model (DTM), typically from ALS, is required to normalize DSI elevations to heights above ground. In this paper we report on our investigations into the use of DSI-derived vertical information for capturing variations in forest structure and compare these results to those acquired using ALS. An ALS-derived DTM was used to provide the spatially detailed ground surface elevations to normalize DSI-derived heights. Similar metrics were calculated from the vertical information provided by both DSI and ALS. Comparisons revealed that ALS metrics provided a more detailed characterization of the canopy surface including canopy openings. Both DSI and ALS metrics had similar levels of correlation with forest structural attributes (e.g., height, volume, and biomass). DSI-based models predicted height, diameter, basal area, stem volume, and biomass with root mean square (RMS) accuracies of 11.2%, 21.7%, 23.6%, 24.5%, and 23.7%, respectively. The respective accuracies for the ALS-based predictions were 7.8%, 19.1%, 17.8%, 17.9%, and 17.5%. Change detection between ALS-derived CHM (time 1) and DSI-derived CHM (time 2) provided change estimates that demonstrated good agreement (r = 0.71) with two-date, ALS only, change outputs. For the single-layered, even-aged stands under investigation in this study, the DSI-derived vertical information is an appropriate and cost-effective data source for estimating and updating forest information. The accuracy of DSI information is based on a capability to measure the height of the upper canopy envelope with performance analogous to ALS. Forest attributes that are well captured and subsequently modeled from height metrics are best suited to estimation from DSI metrics, whereas ALS is more suitable for capturing stand density. Further investigation is required to better understand the performance of DSI-derived height products in more complex forest environments. Furthermore, the difference in variance captured between ALS and DSI-derived CHM also needs to be better understood in the context of change detection and inventory update considerations.