Canadian Forest Service Publications

Aboveground forest biomass derived using multiple dates of WorldView-2 stereo-imagery: quantifying the improvement in estimation accuracy. 2018. Vastaranta, M.; Yu, X.; Luoma, V.; Karjalainen, M.; Saarinen, N.; Wulder, M.A.; White, J.C.; Persson, H.J.; Hollaus, M.; Yrttimaa, T.; Holopainen, M.; Hyyppä, J. International Journal of Remote Sensing, 39:23, 8766-8783.

Year: 2018

Available from: Pacific Forestry Centre

Catalog ID: 39217

Language: English

CFS Availability: PDF (download)

Available from the Journal's Web site.
DOI: 10.1080/01431161.2018.1492176

† This site may require a fee.

Abstract

The aim of this study was to investigate the capabilities of two date satellite-derived image-based point clouds (IPCs) to estimate forest aboveground biomass (AGB). The data sets used include panchromatic WorldView-2 stereo-imagery with 0.46 m spatial resolution representing 2014 and 2016 and a detailed digital elevation model derived from airborne laser scanning data. Altogether, 332 field sample plots with an area of 256 m2 were used for model development and validation. Predictors describing forest height, density, and variation in height were extracted from the IPC 2014 and 2016 and used in k-nearest neighbour imputation models developed with sample plot data for predicting AGB. AGB predictions for 2014 (AGB2014) were projected to 2016 using growth models (AGBProjected2016) and combined with the AGB estimates derived from the 2016 data (AGB2016). AGB prediction model developed with 2014 data was also applied to 2016 data (AGB2016pred2014). Based on our results, the change in the 90th percentile of height derived from the WorldView-2 IPC was able to characterize forest height growth between 2014 and 2016 with an average growth of 0.9 m. Features describing canopy cover and variation in height derived from the IPC were not as consistent. The AGB2016 had a bias of −7.5% (−10.6 Mg ha−1) and root mean square error (RMSE) of 26.0% (36.7 Mg ha−1) as the respective values for AGBProjected2016 were 7.0% (9.9 Mg ha−1) and 21.5% (30.8 Mg ha−1). AGB2016pred2014 had a bias of −19.6% (−27.7 Mg ha−1) and RMSE of 33.2% (46.9 Mg ha−1). By combining predictions of AGB2016 and AGBProjected2016 at sample plot level as a weighted average, we were able to decrease the bias notably compared to estimates made on any single date. The lowest bias of −0.25% (−0.4 Mg ha−1) was obtained when equal weights of 0.5 were given to the AGBProjected2016 and AGB2016 estimates. Respectively, RMSE of 20.9% (29.5 Mg ha−1) was obtained using equal weights. Thus, we conclude that combination of two date WorldView-2 stereo-imagery improved the reliability of AGB estimates on sample plots where forest growth was the only change between the two dates.

Plain Language Summary

The aim of this study is to investigate the capabilities of satellite-derived image-based point clouds (IPCs) generated from bi-temporal panchromatic WorldView-2 stereo-imagery with ~0.5 m spatial resolution using an area-based approach to estimate aboveground biomass (AGB). The data sets used include WorldView-2 stereo-imagery representing 2014 and 2016, a detailed digital elevation model derived from airborne laser scanning (ALS) data, as well as 332 field sample plots with an area of 256 m2 that were further divided to modelling and validation plots. Predictors describing forest height, density, and variation in height were extracted from the IPC 2014 and 2016 and used in k-Nearest Neighbor (k-NN) imputation models developed with sample plot data for predicting AGB.

Date modified: