Canadian Forest Service Publications

Contribution of adventitious vs initial roots to growth and physiology of black spruce seedlings. 2019. Pernot, C.; Thiffault, N.; DesRochers, A. Physiol. Plant. 165: 29-38.

Year: 2019

Available from: Laurentian Forestry Centre

Catalog ID: 39486

Language: English

CFS Availability: PDF (request by e-mail)

Available from the Journal's Web site.
DOI: 10.1111/ppl.12735

† This site may require a fee.


Black spruce (Picea mariana [Mill.] BSP) is a boreal tree species characterized by the formation of an adventitious root system. Unlike initial roots from seed germination, adventitious roots gradually appear above the root collar, until they constitute most of mature black spruce root system. Little is known about the physiological role they play and their influence on tree growth relative to initial roots. We hypothesized that adventitious roots present an advantage over initial roots in acquiring water and nutrients. To test this hypothesis, the absorptive capacities of the two root systems were explored in a controlled environment during one growing season. Black spruce seedlings were placed in a double-pot system allowing irrigation (25 and 100% water container capacity) and fertilization (with or without fertilizer) inputs independent to initial and adventitious roots. After 14weeks, growth parameters (height, diameter, biomass), physiology (net photosynthetic rate, stomatal conductance, shoot water potential) and nutrient content (N, P, K, Ca and Mg foliar content) were compared. Most measured parameters showed no difference for the same treatment on adventitious or initial roots, except for root biomass. Indeed, fertilized black spruce seedlings invested heavily in adventitious root production, twice as much as initial roots. This was also the case when adventitious roots alone were irrigated, while seedlings with adventitious roots subjected to low irrigation produced initial root biomass equivalent to that of adventitious roots. We conclude that black spruce seedlings perform equally well through adventitious and initial roots, but if resources are abundant, they strongly promote development of adventitious roots.

Date modified: