Canadian Forest Service Publications

Tree rings provide no evidence of a CO₂ fertilization effect in old subalpine forests of western Canada. 2018. Hararuk, O.; Campbell, E.M.; Antos, J.A.; Parish, R. Glob Change Biol. 25:1222–1234.

Year: 2018

Available from: Pacific Forestry Centre

Catalog ID: 39553

Language: English

CFS Availability: PDF (download)

Available from the Journal's Web site.
DOI: 10.1111/gcb.14561

† This site may require a fee.

Abstract

Atmospheric CO2 concentrations are now 1.7 times higher than the preindustrial values. Although photosynthetic rates are hypothesized to increase in response to rising atmospheric CO2 concentrations, results from in situ experiments are inconsistent in supporting a CO2 fertilization effect of tree growth. Tree‐ring data provide a historical record of tree‐level productivity that can be used to evaluate long‐term responses of tree growth. We use tree‐ring data from old‐growth, subalpine forests of western Canada that have not had a stand‐replacing disturbance for hundreds of years to determine if growth has increased over 19th and 20th centuries. Our sample consisted of 5,858 trees belonging to five species distributed over two sites in the coastal zone and two in the continental climate of the interior. We calculated annual increments in tree basal area, adjusted these increments for tree size and age, and tested whether there was a detectable temporal trend in tree growth over the 19th and 20th centuries. We found a similar pattern in 20th century growth trends among all species at all sites. Growth during the 19th century was mostly stable or increasing, with the exception of one of the coastal sites, where tree growth was slightly decreasing; whereas growth during the 20th century consistently decreased. The unexpected decrease in growth during the 20th century indicates that there was no CO2 fertilization effect on photosynthesis. We compared the growth trends from our four sites to the trends simulated by seven Earth System Models, and saw that most of the models did not predict these growth declines. Overall, our results indicate that these old‐growth forests are unlikely to increase their carbon storage capacity in response to rising atmospheric CO2, and thus are unlikely to contribute substantially to offsetting future carbon emissions.

Plain Language Summary

Atmospheric CO2 concentrations are now 1.7 times higher than the preindustrial values. Although photosynthetic rates are hypothesized to increase in response to rising atmospheric CO2 concentrations, results from in situ experiments are inconsistent in supporting a CO2 fertilization effect of tree growth. Tree‐ring data provide a historical record of tree‐level productivity that can be used to evaluate long‐term responses of tree growth. We use tree‐ring data from old‐growth, subalpine forests of western Canada that have not had a stand‐replacing disturbance for hundreds of years to determine if growth has increased over 19th and 20th centuries. Our sample consisted of 5,858 trees belonging to five species distributed over two sites in the coastal zone and two in the continental climate of the interior. We calculated annual increments in tree basal area, adjusted these increments for tree size and age, and tested whether there was a detectable temporal trend in tree growth over the 19th and 20th centuries. We found a similar pattern in 20th century growth trends among all species at all sites. Growth during the 19th century was mostly stable or increasing, with the exception of one of the coastal sites, where tree growth was slightly decreasing; whereas growth during the 20th century consistently decreased. The unexpected decrease in growth during the 20th century indicates that there was no CO2 fertilization effect on photosynthesis. We compared the growth trends from our four sites to the trends simulated by seven Earth System Models, and saw that most of the models did not predict these growth declines. Overall, our results indicate that these old‐growth forests are unlikely to increase their carbon storage capacity in response to rising atmospheric CO2, and thus are unlikely to contribute substantially to offsetting future carbon emissions.

Date modified: