Canadian Forest Service Publications

Towards a whole-system framework for wildfire monitoring using Earth observations. Morgan A. Crowley, Christopher A. Stockdale, Joshua M. Johnston, Michael A. Wulder, Tianjia Liu, Jessica L. McCarty, Jesse T. Rieb, Jeffrey A. Cardille, Joanne C. White

Year: 2022

Issued by: Great Lakes Forestry Centre

Catalog ID: 41082

Language: English

Availability: Not available through the CFS (click for more information).

Available from the Journal's Web site.
DOI: 10.1111/gcb.16567

† This site may require a fee

Mark record

Abstract

Fire seasons have become increasingly variable and extreme due to changing climatological, ecological, and social conditions. Earth observation data are critical for monitoring fires and their impacts. Herein, we present a whole-system framework for identifying and synthesizing fire monitoring objectives and data needs throughout the life cycle of a fire event. The four stages of fire monitoring using Earth observation data include the following: (1) pre-fire vegetation inventories, (2) active-fire monitoring, (3) post-fire assessment, and (4) multi-scale synthesis. We identify the challenges and opportunities associated with current approaches to fire monitoring, highlighting four case studies from North American boreal, montane, and grassland ecosystems. The field of remote sensing is experiencing a rapid proliferation of new data sources, providing observations that can inform all aspects of our fire monitoring framework; however, significant challenges for meeting fire monitoring objectives remain. We identify future opportunities for data sharing and rapid co-development of information products using cloud computing that benefits from open-access Earth observation and other geospatial data layers.

Plain Language Summary

Fire seasons have become increasingly variable and extreme due to changing climatological, ecological, and social conditions. Earth observation data are critical for monitoring fires and their impacts. Herein, we present a whole-system framework for identifying and synthesizing fire monitoring objectives and data needs throughout the life cycle of a fire event. The four stages of fire monitoring using Earth observation data include the following: (1) pre-fire vegetation inventories, (2) active-fire monitoring, (3) post-fire assessment, and (4) multi-scale synthesis. We identify the challenges and opportunities associated with current approaches to fire monitoring, highlighting four case studies from North American boreal, montane, and grassland ecosystems. The field of remote sensing is experiencing a rapid proliferation of new data sources, providing observations that can inform all aspects of our fire monitoring framework; however, significant challenges for meeting fire monitoring objectives remain. We identify future opportunities for data sharing and rapid co-development of information products using cloud computing that benefits from open-access Earth observation and other geospatial data layers.