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Abstract
Jack pine budworm (Choristoneura pinus pinus (Free.)) is a native insect defoliator of mainly jack pine (Pinus

banksiana Lamb.) in North America east of the Rocky Mountains. Periodic outbreaks of this insect, which generally last

two to three years, can cause growth loss and mortality and have an important impact ecologically and economically in

terms of timber production and harvest. The jack pine budworm prefers to feed on current year needles. Their characteristic

feeding habits cause discolouration or reddening of the canopy. This red colouration is used to map the distribution and

intensity of defoliation that has taken place that year (current defoliation). An accurate and consistent map of the

distribution and intensity of budworm defoliation (as represented by the red discolouration) at the stand and within stand

level is desirable.

Automated classification of multispectral imagery, such as is available from airborne and new high resolution satellite

systems, was explored as a viable tool for objectively classifying current discolouration. Airborne multispectral imagery was

acquired at a 2.5 m resolution with the Multispectral Electro-optical Imaging Sensor (MEIS). It recorded imagery in six nadir

looking spectral bands specifically designed to detect discolouration caused by budworm and a near-infrared band viewing

forward at 358 was also used. A 2200 nm middle infrared image was acquired with a Daedalus scanner. Training and test areas of

different levels of discolouration were created based on field observations and a maximum likelihood supervized classification

was used to estimate four classes of discolouration (nil-trace, light, moderate and severe). Good discrimination was achieved

with an overall accuracy of 84% for the four discolouration levels. The moderate discolouration class was the poorest at 73%,

because of confusion with both the severe and light classes. Accuracy on a stand basis was also good, and regional and within

stand discolouration patterns were portrayed well. Only three or four well-placed spectral bands were needed for a good

classification. A narrow red band, a near-infrared and short wave infrared band were most useful. A forward looking band did not

improve discolouration estimation, but further testing is needed to confirm this result.
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This method of detecting and classifying discolouration appears to provide a mapping capability useful for conducting jack

pine budworm discolouration surveys and integrating this information into decision support systems, forest inventory, growth

and yield predictions and the forest management decision-making process.

# 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Outbreaks of forest insect defoliators are a natural

and potent influence on forest productivity and timber

resources. Innovative improvements to monitoring

and managing insect outbreaks are always in demand.

Forests in Canada are routinely disturbed and some-

times devastated by insects. Their influence can, in

fact, be the single most important factor on forest

management of affected regions. For example, during

years of peak outbreak of major defoliators, the area

affected by moderate and severe defoliation is larger

than the total annual area of harvest and forest fires

combined for Canada (FIDS, 1980–1995; CFS, 2002).

The jack pine budworm (Choristoneura pinus pinus

(Free.)) can have a serious impact on jack pine (Pinus

banksiana Lamb.) stands and plantations throughout

the range of jack pine in North America (McCullough,

2000). For example, in the mid-1980s jack pine

budworm defoliation in Ontario peaked at approxi-

mately 3.7 million ha with a resurgence of populations

in eastern Ontario beginning in 1992 affecting

420,000 ha (Howse and Meating, 1995). This latter

outbreak is the subject of this report. There has not

been a recent large outbreak in North America, but

because of the cyclical nature of jack pine budworm an

outbreak is expected soon.

Accurate mapping of insect presence and damage

extent allows forest managers to determine potential

effects on wood supply and stand vulnerability, and to

design appropriate intervention plans such as reor-

ienting harvest schedules, implementing biological or

chemical control programs and conducting salvage

logging (MacLean, 1990; Alfaro, 1991; Volney et al.,

1995). Various decision support systems have been

developed to help manage affected forests, and all

require good spatial information on the distribution

and levels of budworm damage (McCullough and

Marshall, 1993; Power and Gillis, 1995; MacLean and

Coulson, 2001).
The jack pine budworm has a similar life history as

the eastern spruce budworm (Choristoneura fumifer-

ana (Clem.)), a close relative (McCullough, 2000).

Eggs are laid on foliage in mid-summer. Neonates

hatch within two weeks and seek hibernation sites

under bark scales to overwinter. Larvae emerge in the

spring and feed first on pollen cones and then on

expanding buds and needles of the current year shoots.

Most damage, however, occurs in the final instar. At

very high population densities, backfeeding may

occur on previous-year needles. As the budworm

feeds, it produces a protective web or feeding tunnel

around the twigs. Partially consumed needles, get

caught in this web, dessicate and turn reddish brown.

Thus, for a period of time before the wind and rain

dislodge these damaged needles from the branches,

trees have a reddish colouration. The colouration

usually remains for three or four weeks, but peak

colouration can be a much shorter period. It normally

occurs in early or mid-July. Assessment of the degree

of discolouration is used as an estimate of the degree

of defoliation for that year, termed current defoliation.

Discolouration is the main index used to detect and

map the distribution and severity of current year

budworm damage.

Traditionally, insect defoliation and discolouration

caused by defoliation has been mapped by trained

observers using aerial sketch mapping techniques

(Heller et al., 1955; Aldrich et al., 1958; Waters et al.,

1958; Wert and Roettgering, 1967; Harris and

Dawson, 1979; McConnell, 1994; MacLean and

MacKinnon, 1996; Ciesla, 2000). Aerial observation

can be augmented by airborne video or digital camera

data to provide a permanent record of conditions,

check and detail mapping, and replace the real-time

sketch mapping with office sketch mapping using only

the imagery (Leckie and Kneppeck, 1986; Myhre

et al., 1990; McConnell, 1994; Knapp and Hoppus,

1996; Ciesla, 2000). Quite a number of factors affect

the accuracy and consistency of the maps. These
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include light conditions, angle of observation,

topography, map source into which defoliation is

sketched, interpreter training and fatigue, and frag-

mentation of defoliation pattern. Also, the method’s

accuracy is compromised by the subjectiveness of

human estimation of defoliation or discolouration

levels. There is no permanent record or means to

recheck results. Presence of non-susceptible forest

types and species is often not factored into the

mapping and estimates. It is also difficult to map

accurately the spatial pattern. Ideally, each forest stand

should receive a consistent, detailed evaluation, and

there is value in knowing the distribution of different

levels of defoliation within stands. This is particularly

important for the jack pine budworm defoliation,

which is often characterized by a patchy pattern

(Nealis et al., 2003).

Multispectral imagery with resolutions in the order

of 2–5 m from airborne or satellite platforms may be a

viable operational tool for mapping jack pine bud-

worm defoliation. Examination of moderate resolu-

tion digital imagery for automatic classification of

insect defoliators of conifers in Canada has concen-

trated mostly on the spruce budworm (Leckie and

Gougeon, 1981; Leckie and Ostaff, 1988; Ahern et al.,

1991), owing to that insect’s wide distribution and

economic impact. There have been no moderate

resolution studies directly related to mapping the red

colouration of current defoliation by the jack pine

budworm. Landsat and SPOT satellite imagery with

resolutions in the order of 20–30 m have been

examined for assessing red stage discolouration

(current defoliation) of conifers by several insects

(Franklin, 1989 for hemlock looper (Lambina fiscel-

laria (Guen.)); Luther et al., 1991 for black headed

budworm (Acleris variana (Fren.); Radeloff et al.,

1999 for jack pine budworm). Difficulties arise in

acquiring imagery during the short temporal window

of peak discolouration, from confusion caused by

varying stand density, hardwood component and

presence of non-susceptible conifer species, and

because of the lack of spatial detail (Leckie, 1987;

Ekstrand, 1994; Radeloff et al., 1999). Satellite

imagery has also been examined for assessment of

jack pine budworm top kill (Hall et al., 1995a) and

cumulative defoliation or total loss of foliage and

mortality (Hopkins et al., 1988). Although symptoms

and damage mechanisms are different, several other
insect, disease and stressing agents that cause

discolouration have also been examined at various

resolutions. Examples are: Coops et al. (2003)

assessed Dothistroma needle blight in pine, which

causes discolouration followed by needle loss, using

10 visible infrared bands, Lawrence and Labus (2003)

to detect the red and yellow discolouration caused by

the Douglas-fir beetle (Dendroctonus pseudotsugae)

at the tree level with hyperspectral data, stress in

maples (Zarco-Tejada et al., 2002) using imaging

spectrometer imagery, root disease symptoms with

automated single tree isolation and multispectral

classification (Leckie et al., 2004), and several recent

studies on assessment of red colouration of pine

caused by mountain pine beetle (Dendroctonus

ponderosa) (Murtha et al., 2000; Franklin et al.,

2003; Sakun et al., 2003). A variety of analysis

techniques have been used including: maximum

likelihood classification, mixture modelling, simple

linear regression, discriminant analysis and regression

tree, red edge, and spectral derivative methods.

Physical based modelling techniques (Hall et al.,

1996; Chen and Leblanc, 1997; Stenberg et al., 2003;

Tian et al., 2003; Verhoef and Bach, 2003; Wang et al.,

2003; Gastellu-Etchegorry et al., 2004) have mostly

been applied to extraction of biophysical parameters

such as leaf area index (LAI), which can be related to

forest damage in terms of loss of foliage and not to the

symptom of discolouration.

This paper examines the use of multispectral

imagery and the utility of a simple easily applied

classification approach for detection and quantification

of discolouration caused by the jack pine budworm.

Two and a half meter resolution Multispectral Electro-

optical Imaging Sensor (MEIS) data was acquired over

a test site of varying levels of jack pine budworm

discolouration. A short wave infrared band was also

acquired by a Daedalus 1260 multispectral scanner

(MSS) simultaneously with the MEIS data. The utility

of spectral bands specifically optimized for detection of

discolouration and the number of spectral bands needed

to achieve good discolouration classification were

assessed and the benefit of a band viewing forward at

358 from nadir explored. Automated maximum like-

lihood classification results were compared against sites

of known discolouration conditions and results exam-

ined in the context of operational implementation in

damage assessment surveys.
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Imagery was radiometrically corrected for illumi-

nation and view angle conditions and then geome-

trically corrected to cartographic coordinates. Field

plots were established and both discolouration and

loss of current year’s foliage assessed from the ground.

Regression of discolouration level versus mean pixel

intensity and examination of their statistical separ-

ability (Jeffries–Matusita (J–M) distance) were used

to assess the best spectral bands and band combina-

tions for discolouration assessment. Maximum like-

lihood classifications were then tested with several

band combinations and number of discolouration

classes.
2. Data

2.1. Site

The study area is in eastern Ontario (468000N,

778250W), near Chalk River approximately 180 km

northwest of Ottawa, Ontario. It covers areas

occupied by the Canadian Forces Base-Petawawa,

Petawawa Research Forest, Algonquin Provincial

Park plus surrounding townships. The forest is part of

the Great Lakes St. Lawrence forest region (Rowe,

1972) and includes predominantly red pine (Pinus

resinosa Ait.), white pine (Pinus strobus L.), jack

pine (P. banksiana Lamb.), spruce (Picea spp.), aspen

(Populus spp.), oak (Quercus spp.), maple (Acer spp.)

and birch (Betula spp.) in pure and mixed stands. The

jack pine stands typically occur on the drier sandy

soil sites and stands are often pure, but vary in density

and age. The jack pine at the site is near the southern

limit of its range.

During 1992, a severe outbreak of jack pine

budworm occurred in the region. Although wide-

spread, discolouration was variable among stands and

regions within the study area. It ranged from stands

that were unaffected through to others with high levels

of budworm feeding and strong red discolouration.

This pattern was a characteristic of the outbreak

(Nealis et al., 2003). In addition, discolouration could

also be quite different among trees within the same

stand and there was some backfeeding on two year and

older needles in some stands. This was the first year

of the outbreak in this area, so there was no defoliation

or exposure of bare branches caused by budworm
activity from previous years. Only the jack pine was

affected, other species were not attacked.

2.2. Remote sensing data

Airborne Multispectral Electro-optical Imaging

Sensor (MEIS II) (McColl et al., 1984) and Daedulus

Model 1260 airborne multispectral scanner (Zwick

et al., 1980) data were recorded for two flight lines

on July 21, 1992, between 1001 and 1019 h EDT.

Discolouration of the defoliated trees had reached

its peak about a week earlier, but was still intense.

Imagery was acquired from an aircraft flown at

approximately 3600 m above ground level giving

across track instantaneous field of views on the ground

of 2.5 m for the MEIS nadir imagery, 3.0 m for the

MEIS stereo channels and 9.0 m for the airborne MSS

data. The sampling interval for the two sensors

resulted in along track pixel spacings of 1.6 m for the

MEIS sensor and 3.3 m for the Daedalus MSS. Across

track pixel spacing of the MEIS was the same as the

instantaneous field of view, but for the Daedalus

scanner the across track sampling interval was 5.3 m.

Flight lines were 30 km long and the swath width of

the MEIS was 2.6 km. Normal colour photographs

(Kodak Aerocolor Negative 2445) at a scale of

1:23,500 were acquired simultaneously. One flight

line was oriented approximately east to west (azimuth

2588) while the second was nearly perpendicular to the

first at an azimuth of 1488. Weather was clear except

for one small cloud. Sun elevation and azimuth were

488 and 1138, respectively.

MEIS imagery was acquired in six nadir viewing

bands and two infrared stereo bands (i.e., bands

viewing fore and aft of the aircraft at 358). This band

set (Table 1) was specifically designed by the authors

for spruce budworm, this study and other damage

assessment applications. The nadir bands were

optimized for detecting spruce budworm discoloura-

tion (current defoliation) symptoms (Leckie et al.,

1988), which have similar characteristics as jack pine

budworm defoliation. The off-nadir bands are

designed to test a hypothesis that viewing the canopy

at an angle versus nadir may give better discrimination

of discolouration since at an angle the sensor is mainly

viewing the canopy and discolouration is often

greatest on the upper crown of attacked trees (Cerezke,

1986; Moody, 1986). At nadir, a sensor is viewing the
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Table 1

Spectral bands used in this studya and correlation coefficients of determination (R2-values) for regressions of discolouration index vs. mean band

intensity for sample areas

Sensor Band number Wavelength midpoint (nm) Bandwidth (nm) R2-value

MEIS 1 448 30 0.08

MEIS 2 525 10 0.31

MEIS 3 553 14 0.27

MEIS 4 593 13 0.64

MEIS 5 667 15 0.88

MEIS 6 780 33 0.92

MEIS 7 (stereo fore) 780 33 0.71

MSS 8 2200 120 0.60

a In this study, an additional MEIS aft-looking stereo channel at 875 nm was acquired but not used.
trees and often the ground between them and this can

cause confusion in classifying damage. The MEIS

sensor does not operate in the short wave infrared,

therefore Daedalus airborne MSS data in a 2200 nm

band were acquired on the same aircraft simulta-

neously with the MEIS imagery.

The image data was calibrated such that digital

value represented at sensor radiance but scaled to

give an image intensity between 0 and 255. No

atmospheric correction or conversion to reflectance

values was conducted. Imagery was corrected for

radiometric variations across the image due to the

atmosphere and illumination-view angle effects. A

well-established empirical approach was used

(Leckie, 1987; Reinartz et al., 1988; Ahern et al.,

1991; Danson and Curran, 1991; Leckie et al., 1996,

2004). Sample areas of dense mature red pine were

acquired across the image and signatures calculated.

For each spectral band, a second order polynomial

correction curve was fit to the mean intensity value

of the red pine areas versus the distance (pixel

columns) from nadir to the center of the sample

areas. An additive offset was then applied to the

intensity of the pixels of each column of the imagery.

The offset for each pixel of a column is taken to be

equal to the number of intensity levels the curve at

that column is above or below the intensity level of

the curve at nadir. A similar best fit polynomial of

the red pine sample areas after correction will result

in a straight-line of slope zero (i.e., no systematic

radiometric variation across the image). Sample

areas of jack pine would have been used but there

was not a sufficient distribution of stands of similar

density, discolouration condition and age class
across the image. The two flight lines were then

radiometrically normalized. The common area

where the two flight lines intersect was checked

for differences in the mean image values of each

band and an additive offset was applied to the pixel

values of each band of the north–south flight line

such that the resulting means of the two images in

the overlap area were the same.

After radiometric correction, the data were

geometrically corrected to UTM coordinates. This

was done using the method of Gibson et al. (1994),

which incorporates attitude and velocity information

from an inertial navigation system and ground control

points of known x, y and z coordinates. The geometric

correction was applied to the nadir MEIS, stereo MEIS

and airborne MSS middle infrared channel. Resulting

imagery was 2 m in resolution. A cubic convolution

resampling kernel was used. Fig. 1 gives an example

of a section of the corrected imagery.

2.3. Description and estimation of discolouration

Aerial visual observation and oblique 35 mm

colour photography was conducted at the same time

as the acquisition of the airborne imagery. Aerial

reconnaissance was also conducted from ultralight

and fixed wing aircraft in the weeks previous to the

flights in order to design the flight lines. These were

during the time of peak discolouration. These aerial

observations, those on the day of the flight, the oblique

aerial photographs and forest inventory were all

used to select sites of varying discolouration levels,

densities, ages and stand compositions. Sixty-seven

ground observation sites were visited and assessed on
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Fig. 1. Segment of the imagery used in the study. The 667, 553 and

448 nm bands are displayed as red, green and blue. The segment is

6.0 km by 2.3 km. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this

article.)
the ground. Additional aerial observation sites were

assessed using only the aerial observation and oblique

photographs. Sites were chosen to represent approxi-

mately equal numbers of the different discolouration

conditions plus stand densities, ages and composit-

ions in a proportion representative of the study area

landscape. On all sites the amount of red coloura-

tion was assessed and assigned to four classes of
discolouration: nil or trace, light, moderate and severe.

The degree of redness corresponds to the amount of

foliage eaten by the budworm and these classes

correspond to overall current year defoliation (needle

loss) levels of <10, 11–30, 31–65 and 66–100%,

respectively. The classes follow closely those routi-

nely used for jack pine budworm damage assessment

(Hall et al., 1995b).

Ground based assessments were made on 67

sites, defined as contiguous areas of fairly uniform

defoliation and discolouration, usually 5–12 ha in

size. Binoculars were used to examine individual

crowns in detail. After a thorough walk through, one of

the discolouration classes was chosen to represent

the entire site. Other measurements were also taken

at the same time. A numerical ‘‘redness value’’ was

estimated (1–10), based on whether redness was

absent, lightly apparent, moderately apparent or very

apparent. Current defoliation level was calculated for

each site by estimating the percent of trees in the site at

each current defoliation level. For instance, if a site

was considered to have 80% of its trees having

moderate defoliation, with an average defoliation of

current growth estimated at 50% and the remaining

20% of the trees being unaffected, then a value of 40

would be calculated (80 � 0.5 + 20 � 0.0). This is

directly related to the amount of red discolouration

and is termed ‘‘discolouration index’’. Age of the

stands was determined through analysis of increment

cores and crown closure was visually estimated in

10% classes. Site assessment was completed by

photographing representative trees. The site boundary

was then drawn on airphotos for later reference.

An independent ground assessment of a sample of

sites was conducted in August after the damaged

foliage had fallen and red colouration had disap-

peared. The damage assessment was done by the forest

health officer responsible for monitoring the region

where the outbreak occurred. He independently

assessed 26 of the 67 ground sites by estimating

overall current defoliation level using binoculars, in

the same manner as was previously done. For eight of

the sites, a detailed assessment was carried out by

removing a 60 cm branch tip from the mid-crown of

six representative trees in each site. On each branch an

estimate of defoliation was made by visually dividing

the branch into quarters and examining all branchlets,

keeping a running total of the percent defoliation and
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computing a final overall percentage for the branch.

The average percent defoliation of the six branches of

a site was used to assign the stand to a current

defoliation level and discolouration class. Overall

agreement of the two independent surveys was good

with only two sites being assigned to different classes.

2.4. Sample areas

From the ground and aerial observation sites,

sample areas were selected for use in characterizing

the spectral signature of different discolouration

conditions, for training the maximum likelihood

classifier and for independent testing of the accuracy

of the classification. These sample areas were chosen

to match the location of ground observation sites or

areas of clearly defined discolouration levels based on

oblique aerial photographs and aerial observation.

Fifty-one areas were delineated on the imagery. They

evenly represent the range of discolouration condi-

tions from unaffected through to very severely

discoloured stands and were also selected to be

distributed spatially over the length and width of each

of the two flight lines. Each sample area was then

allocated to one of the four discolouration classes: nil-

trace, light, moderate and severe. The jack pine stands

used in this study were dense (most 65–75% crown

closure but ranging from 50 to 90%) and between the

ages of 30 and 65 years, with a few younger stands

down to 20 years old. Most sites were pure jack pine,

but some had minor components of other species,

usually white pine. The individual training and test

areas were typically between 300 and 1800 pixels (i.e.,

6–36 ha) in size. In addition to unaffected jack pine

and budworm attacked jack pine areas, sample areas of

a non-jack pine coniferous class were delineated and

consisted of mainly white pine.

Individual sample areas were randomly assigned to

either training or test sets such that 17 sample areas

were designated for training and 34 for testing. The

individual training sample areas of each class were

amalgamated and used to generate the signatures that

represent each class and the test areas were utilized to

estimate the accuracy of the classification. The process

resulted in a set of approximately 10–12 sample areas

of each discolouration class distributed across the

study site, approximately 1/3 used for training and 2/3

for testing.
3. Analysis and results

3.1. Examination of the utility of spectral bands

3.1.1. Regression analysis

The relationship of individual bands to discoloura-

tion level provides insight into the usefulness of the

bands for separating discolouration classes. Empirical

polynomial fit and coefficients of determination were

used to provide insight into the influence of discoloura-

tion on the spectral response in each band and the

effectiveness of the band for discriminating discoloura-

tion levels. Multiple regressions were also conducted to

help determine the effectiveness of multiple bands in

combination. Half the sample areas (26) were used as

input into a regression analysis. For each sample area,

‘‘discolouration index’’ as determined from the field

observations was plotted against mean image intensity

in each band. For the spectral bands with good

relationships between discolouration and intensity,

the relationship was generally curvilinear with greater

change in image intensity with discolouration at low

discolouration levels (Fig. 2). However, if only data

above discolouration index 15 were considered, the

relationship was close to a straight-line.

Second-degree polynomial regressions (a + bx +

cx2) of discolouration index (dependent variable) and

image mean intensity (independent variable) were

determined for the six nadir bands, the stereo channel

and airborne MSS short wave infrared band (Table 1).

The near-infrared band (780 nm) and red band

(667 nm) had highest correlation coefficient of

determination (R2) values, followed by the stereo

near-infrared band. The blue and green bands (448,

553 and 525 nm bands) had weak relationships of

band intensity to discolouration. The 2200 nm band

had only a moderate relationship with discolouration;

this may be in part due to its lower original acquisition

resolution. Fig. 2 gives examples of the regressions.

A multiple linear regression model of all eight

bands combined (six nadir, stereo fore and airborne

MSS SWIR band), resulted in an R2-value of 0.942.

This is not much higher than the 780 nm band by itself.

Multiple regressions with all six nadir channels

produced an R2 of 0.938. R2-values for combinations

of the 667, 780 nm, stereo and 2200 nm bands, the 667,

780 nm and stereo bands, and only the 667 and 780 nm

bands were 0.904, 0.900 and 0.892, respectively. Root
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Fig. 2. Discolouration index vs. mean band intensity for sample

areas. The second order polynomial regression curve is also given:

(a) 667 nm band; (b) 780 nm band; (c) 780 nm stereo forward

viewing band.
mean square error for a two band regression (the 667

and 780 nm bands) was 10.1, 8.4 for all six nadir bands

and approximately 8.5 for regressions when the stereo

and short wave infrared band were added. It is clear

that only one or two bands are needed to produce a

strong regression relationship.

3.1.2. Discolouration class separability analysis

Jeffries–Matusita distance (Richards, 1993), a

statistical measure of the separabilities of two classes,

was used to determine the best combinations of bands
for separating the discolouration classes (nil-trace,

light, moderate and severe) from each other and from

the non-jack pine coniferous class. Separability using

a set of bands was determined using the spectral

signature (mean and covariance matrix) of the training

areas of each class. J–M distance ranges from 0 to 2.0

with higher values representing better separability of

class pairs. Therefore, the bands or band combinations

producing the highest J–M distance averaged over

each pair of discolouration classes can be considered

the best for discriminating discolouration levels. The

best single band for separating classes was taken to be

that band producing the largest average J–M distance

between each possible pair of classes. The best

combination of two bands was determined using the

best single band in combination with each of the

remaining bands (the combination with the largest

average J–M distance is used to indicate the best

sequential band combination). A similar procedure

was followed for combinations of three to eight bands

(Table 2).

For separating the nil-trace, light, moderate and

severe classes, the best single bands were the 667 and

2200 nm bands, followed with considerably less

separability by the near-infrared bands (nadir and

stereo and the 593 nm band). The 553, 525 and

448 nm bands had low J–M distances (Table 2). The

best sequential combination of two bands was the 667

and 780 nm band, with the 2200 nm airborne MSS

band being added to these for the best sequential

combination of three bands. There is a large increase

in separability for two bands versus one band and

smaller increases with each additional band thereafter.

The best single bands, as well as, combinations of

bands were similar if the J–M distances for only the

light, moderate and severe classes were considered.

The order of entry into the combination of best bands

if only the six nadir bands were included (as might be

the case for sensor systems that do not have a short

wave infrared or forward looking capability) was the

667, 780, 448, 553, 593 and 525 nm bands.

When separability of the non-jack pine conifer

class was included in the analysis along with the four

jack pine classes (data not shown), the two near-

infrared bands (nadir and stereo) became the most

important single bands. The stereo 780 nm band,

667 nm band, 780 nm nadir band and 2200 nm band

are the sequence of best four bands in combination
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Table 2

J–M distance for the sequence of best one to eight bands

Best band combinations (band central wavelength, nm) Band (central wavelength, nm) Jeffries–Matusita distance

Single bands 667 2200 780 780 fore 593 553 525 448

0.798 0.618 0.339 0.302 0.296 0.176 0.171 0.123

Two bands—667 with 780 448 553 780 fore 525 2200 593

1.281 1.117 1.064 0.983 0.977 0.949 0.885

Three bands—667, 780 with 2200 448 780 fore 553 593 525

1.376 1.329 1.324 1.318 1.313 1.305

Four bands—667, 780, 2200 with 448 780 fore 593 553 525

1.424 1.413 1.405 1.405 1.393

Five bands—667, 780, 2200, 448 with 553 780 fore 525 593

1.464 1.459 1.457 1.456

Six bands—667, 780, 2200, 448, 553 with 780 fore 525 593

1.492 1.491 1.490

Seven bands—667, 780, 2200, 448, 553, 780 fore with 593 525

1.522 1.521

Eight bands—667, 780, 2200, 448, 553, 780 fore, 593 with 525

1.551

The J–M distance is the average over each pair of classes among the four discolouration classes (healthy, light, moderate and severe).
with each other (based on the average J–M distance for

the healthy, light, moderate and severe discolouration

classes plus the non-jack pine conifer class). For the

non-jack pine conifer class versus each of the other

four classes the best single band was the stereo 780 nm

channel, followed by the nadir 780 nm band (average

J–M distances of 1.61 and 1.55, respectively). The 448

and 553 nm bands were the next most important single

bands (J–M distance of 0.97 and 0.91, respectively). It

is interesting to note that the best single bands for

separating healthy jack pine from non-jack pine

conifer were the same as for separating non-jack pine

conifer from defoliated jack pine. Therefore, a near-

infrared band was useful not only for separating

discolouration classes but also for separating jack pine

from other conifers (in this case, mostly white pine).

3.2. Classification of discolouration classes

Maximum likelihood classifications (Richards,

1993) were conducted with different numbers of

bands based on the band combinations determined in

the separability analysis. The spectral signatures of the

training areas of each class were used as input to

the classification. The resulting classifications were

smoothed to remove isolated pixels or small clusters of
one class contained within another larger class.

Smoothing is accomplished with a post-classification

filtering algorithm that eliminates areas of 10 pixels or

less of the same class (10 pixels connected in any

orientation including diagonally). Pixels in these small

areas are assigned the class of adjacent areas through a

process of erosion of the boundary. This smoothing

results in a better representation of discolouration as it

would be mapped operationally, and better accuracies.

With current sketch map and ground survey

techniques, discolouration is generally mapped in

large units assigned to a single representative class.

The true situation within a stand is that there is often a

mix of discolouration levels within zones or even

among adjacent trees. The ground truth class assigned

to training and test areas is an average class, the area

itself having some variation in level within it.

Therefore, the smoothing applied to the classification

helps make the image derived classes for the area more

compatible with that described from the ground

(ground truth). Classification accuracies were deter-

mined by comparing the classification of each pixel in

the test areas to the categorization of that test area as

determined on the ground. Classifications included the

nil-trace jack pine class, the light, moderate and severe

discolouration classes plus the non-jack pine conifer
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Fig. 3. Average classification accuracy for the four discolouration

classes vs. number of nadir bands used. Also given are the accuracies

when the stereo and 2200 nm bands were added. The average

accuracy is the mean of the healthy, light, moderate and severe

class accuracies. (a) Omission accuracy (percent pixels of test areas

of each class classified correctly). (b) Commission accuracy (percent

of all pixels within the test areas classified as a class that are actually

of that class).
class. The latter class was included in order to prevent

areas of other conifers being incorrectly classified as

jack pine or discolouration.

Fig. 3 plots the classification accuracy of dis-

colouration for classifications with the best combina-

tion of different numbers of bands as specified by the
Table 3

Confusion matrix for classification of the six nadir bands for classes of healt

non-jack pine conifer giving the percent of pixels in the test areas of eac

Ground truth Classification

Healthy Light Moderate Severe

Healthy 92.7 4.5 0 0

Light 6.0 80.0 9.9 3.5

Moderate 0.1 14.0 73.3 12.1

Severe 0 1.0 6.2 90.5

Also provided is the total number of pixels in the test areas.
J–M distance analysis (Table 2). It appears that only

two or three bands are needed to produce good

accuracies. However, if one examines omission errors

for the light class and commission errors for the

light and moderate classes, there is an approximate

5% increase in accuracy for classifications using the

best four versus five bands. Maximum overall

classification accuracies were in the order of 85%

(Fig. 3, average accuracy of the four discolouration

classes).

Table 3 gives the confusion matrix for a

classification of four discolouration levels using all

six nadir bands. Fig. 4 shows the corresponding

classified image for a segment of the test area.

Regional patterns of discolouration and within stand

variations are evident. Omission accuracy was 93, 80,

73 and 91%, respectively, for the nil, light, moderate

and severe classes. This represents the number of

pixels in the test areas of each class actually classified

as that class. Average accuracy over the four classes

was 84%. Trends observable in both Table 3 and Fig. 4

are common to other band combinations. Confusion

was between adjacent classes. The moderate class was

most poorly classified, having significant misclassi-

fication with both the light and severe classes.

Accuracy of a classification without post-classifica-

tion smoothing was in the order of 5–10% lower at 89,

70, 65 and 86% for nil, light, moderate and severe,

respectively. Commission accuracy averaged over

each discolouration class was 86% (95, 83, 76 and

88%, respectively, for nil to severe). It represents the

percent of all pixels in the test areas classified as a

class that were actually that class (i.e., were in the test

area of that class). It must be remembered that there

can be a mix of discolouration levels within the test

areas and the above analysis assumes all pixels are the

discolouration class assigned to the site.
hy jack pine, light, moderate and severe discolouration and a class of

h discolouration class classified as each class

Non-jack pine conifer Unclassified Total no. of pixels

2.8 0 12426

0.6 0 8996

0.0 0.5 6315

0.0 2.3 8529
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Fig. 4. Classified image for the segment shown in Fig. 1. Classifica-

tion is with all six nadir bands overlaid on the 553 nm image.

Healthy: light green, light: yellow, moderate: orange, severe: red,

non-jack pine conifer: dark green. (For interpretation of the refer-

ences to colour in this figure legend, the reader is referred to the web

version of this article.)
Accuracy was very good when assessed on a site

basis (i.e., if the whole sample area was assigned to

one class based on the proportion of pixels within the

site classified as each discolouration class). A

discolouration index was assigned to each site in a

similar fashion as was done using the field data. The

percent of pixels of each class in the test sample area
was multiplied by the midpoint percent of the class

(0.05 for nil-trace, 0.20 for light, 0.425 for moderate

and 0.825 for severe). These were summed over the

four classes to give a discolouration index. Using this

procedure, all sample areas were assigned to the

correct class. If test areas were assigned to the class of

the most commonly occurring discolouration class

within it, then all but one test area, a moderate site, was

correctly labelled.

Non-jack pine conifer areas had few pixels (<1%)

classified as light, moderate or severe discolouration.

It can also be seen from Fig. 4 that there were few

spurious pixels or surface types (unrelated to jack pine

or discolouration) that were classified as discoloura-

tion. For example, classification results (six nadir

bands) were analyzed for a large image segment

representative of non-jack pine forest land (i.e., a

typical area of other forest types, wetlands, water,

roads and other surface types). Only 2.4% of the

pixels in this area were classified as one of the

discolouration classes (light, moderate or severe).

Most error was associated with shallow water,

wetland and stand edges where shadows occur. If a

water class was included in the classification, the error

was approximately 1%. This error increased but

remained low even when only two or three spectral

bands were used in the classification (2.7% with a

water class and 5.1% without a water class). In

addition, in operational surveys results will likely be

overlain on the forest inventory so that only jack pine

stands would be considered and misclassification of

other surface and forest types as discolouration would

not be a problem.

Despite being important spectral bands in the

separability analysis, the addition of the stereo and

short wave infrared bands to the six nadir bands did

not result in gains over using only the six nadir bands.

Addition of the stereo band gave similar average

overall accuracies of the discolouration classes, but a

shift in classification of pixels towards less defoliated

classes. Also, the amount of non-defoliated jack pine

misclassified as non-jack pine conifer rose from 2 to

18%. Replacement of band six (nadir near-infrared

band) with the equivalent stereo infrared band resulted

in similar affects. Addition of the 2200 nm band to the

six nadir bands resulted in only small changes in both

the classification accuracies of each class, and in the

overall accuracy.
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4. Discussion

The MEIS imagery using specialized spectral

bands was successful in classifying jack pine bud-

worm discolouration to a degree of accuracy that

meets operational requirements for defoliation and

discolouration assessment (Volney et al., 1995;

MacLean and MacKinnon, 1996; Ciesla, 2000). Four

discolouration levels were accurately classified (nil-

trace, light, moderate and severe). Discolouration was

determined to within one discolouration class 97% of

the time for the healthy test pixels, 96% of the time for

light test areas, 99% for the moderate class and 97%

for severe discolouration. Accuracy for the exact class

was also high. The most distinctive classes were the

extreme classes, nil-trace and severe, with accuracies

of 93 and 91%, respectively. The accuracy of the light

class was less at 80%. Accuracy of the moderate class

was 73%. There was considerable confusion of areas

of moderate discolouration with both the severe and

light classes. This also occurs in the ocular assessment

of defoliation and discolouration on the ground or

from aerial observation (Volney, 1988). If sites were

assigned to a single discolouration class based on the

proportion of pixels of each class within them,

accuracy on a site basis was very good. Regression

analysis indicated that discolouration level (index) of a

pixel can be estimated to within a RMS error of 10

using the 667 and 780 nm digital values for that pixel

(8.4 using all 6 nadir bands). It must be remembered

that discolouration occurs in a continuum of levels

and, in the case of jack pine budworm, can be variable

within stands and even between adjacent trees.

It has also been shown that good accuracy is

achievable with a minimum number of spectral bands, if

they are well chosen. The spectral bands of the MEIS

spruce budworm stereo filter set, specifically designed

to detect current spruce budworm discolouration,

proved to also be effective for assessing jack pine

budworm discolouration. In order to confirm the

effectiveness of the bands and relate them to the

physical characteristics of the tree components and

damage symptoms, findings for this study are compared

to those of the ground based studies of discolouration of

trees (Leckie et al., 1988) and known spectral

characteristics of the needles, red feeding debris and

branches (Leckie et al., 1989) related to spruce

budworm. The narrow red band at 667 nm was the
best band for detecting discolouration of spruce

budworm and as indicated in this study also for jack

pine budworm. The red colouration is caused by dried

needles, frass (larval excrement) and other feeding

debris, and is also enhanced by exposure of bare twigs.

The MEIS data of this study were acquired after peak

colouration and the importance of this band and indeed

classification accuracy would be expected to be even

greater at maximum colouration. The near-infrared

(780 nm) band was also very important for discriminat-

ing discolouration level. A decrease in near-infrared

reflectance with increasing discolouration is a mani-

festation of loss of healthy foliage (with its high near-

infrared reflectance), exposure of bark (with lower near-

infrared reflectance) and presence of red feeding debris

(also with low near-infrared reflectance) (Leckie et al.,

1989). The green and blue bands in general are useful

for discriminating forest types, and in this study had low

value for discriminating discolouration levels. This is in

keeping with spectral characteristics determined for

spruce budworm, which showed only a weak relation-

ship of the blue and green part of the spectrum to

discolouration. The blue part of the spectrum, however,

is noted to be useful for detecting loss of foliage and tree

mortality through exposure of branches. Weathered

branches also often have high blue reflectance. The test

site had only suffered one year of budworm feeding and

exposure and weathering of branches and the impor-

tance of the blue band were not strong in this data set,

although in the sequence of best bands the 448 nm band

entered as the fourth band after the red, near-infrared

and short wave infrared bands. Jack pine budworm

defoliation generally only occurs over two or three

years in succession and therefore exposure and

subsequent weathering of branches may not be as

strong as in spruce budworm defoliation, which often

has many years of defoliation. As mortality occurs, it

would be expected that a blue spectral band would

become more useful for detection of jack pine budworm

damage. The narrow spectral band near 525 nm had

shown in ground based spectral studies better cap-

abilities than surrounding wavelengths for detecting

current spruce budworm discolouration. Results of this

study, however, showed it to be poor at differentiating

levels of jack pine discolouration. The 590 nm band,

according to the spectrometer data, is in a region of little

change of reflectance with increasing discolouration

and is at a transition from decreasing reflectance with
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discolouration in the green part of the spectrum to

increasing reflectance in the red. The MEIS data

showed it had moderate capability for discriminating

jack pine budworm discolouration as a single band, but

was one of the last bands to enter into the sequence of

best combinations of bands.

The 2200 nm short wave band was also useful for

discolouration assessment. Short wave bands have

consistently proved effective in detecting loss of foliage

and exposure of branches (Leckie and Gougeon, 1981;

Ekstrand, 1990; Franklin et al., 1995; Hall et al., 1995a).

The spectrometer study of Leckie et al. (1988)

regarding discolouration caused by the spruce bud-

worm indicated the short wave infrared regions (1440–

1810 and 1960–2400 nm) to be better than visible and

near-infrared bands for discrimination and a specific

spectral region from 2030 to 2210 nm had the greatest

discrimination capability of all wavelengths. Despite

the short wave data of this study being acquired at lower

resolution than the MEIS bands, the 2200 nm band was

the second most important single band for discoloura-

tion discrimination and entered third in the sequence of

best bands. Although the short wave infrared band did

not improve accuracies when added to the six nadir

bands, it is recommended that, if feasible, a short wave

infrared band should be included in any sensor

configuration utilized for jack pine budworm disco-

louration assessment.

Since budworm feeding and consequent discoloura-

tion is often more intense in the upper crown of trees and

viewing at an angle may reduce confusion caused by

density variation and viewing of the ground or

understory, it was hypothesized that if the sensor bands

wereoriented toview the forest at an angle (e.g., forward

viewing), discolouration assessment would be more

accurate. In addition to the MEIS sensor, there are a

number of imagers both airborne and spaceborne

available that can acquire spectral data at different

angles (e.g., Advanced Solid-State Array Spectro-

radiometer (ASAS), Irons et al., 1991; Frequent Image-

Frames Enhanced Digital Ortho-Rectified Mapping

(FIFEDOM), Wehn et al., 2002; Advanced Digital

Sensor (ADS40), Sandau et al., 2000; POLarizarion and

Directionality of Earth Reflectances (airPOLDER and

POLDER), Deschamps et al., 1994; Multi-angle

Imaging SpectroRadiometer (airMISR and MISR),

Diner et al., 1998a,b; Compact High Resolution

Imaging Spectrometer (CHRIS), BNCS, 2002). In
addition, several optical satellite sensors are pointable,

including the high resolution IKONOS and Quickbird

systems, thus permitting acquisition of data at an angle.

Angular data has been shown to be useful for estimating

biophysical parameters and for land cover typing (e.g.,

Leroy and Bréon, 1996; Diner et al., 1999; Gemmel and

McDonald, 2000; Chen et al., 2002; Chopping et al.,

2003; Urso et al., 2004; Veroustraete and Verstraiten,

2004), but few have addressed directly the value for

damage assessment and mapping of discolouration. The

spectralband of the forwardstereochannel (directed358
off-nadir) of the spruce budworm stereo filter set was

designed to be the same as one of the nadir channels and

be in a spectral band (near-infrared) that is good for

discriminating discolouration levels. However, several

factors may have reduced this channel’s effectiveness in

classifications of discolouration in this study and

decreased its contribution to class separability (J–M

distance) forbandcombinations.Theoriginal resolution

for the forward looking channel was slightly less than

that of the nadir bands, forward looking data are

acquiredatdifferent timesandaircraftpositionsandthus

interband registration with the nadir bands may not be as

good as among the nadir bands themselves, and flight

direction and sun azimuth were such that the stereo

channel was viewing the side of the trees that was partly

self shaded.

When compared to the 780 nm nadir band, the

780 nm forward looking channel was not any better for

differentiating discolouration levels. The single band J–

M distance was somewhat lower averaged over four

discolouration classes (nil-trace, light, moderate and

severe) and slightly higher averaged over the light,

moderate and severe classes. The regression analysis

showed the stereo channel to be poorer for discriminat-

ing discolouration levels. There was no advantage in

adding the stereo channel to a six band classification or

substituting it for the nadir band. Based on this study

there does not seem to be any advantage in having

oblique viewing spectral bands, but additional testing is

in order.
5. Conclusions

Specialized spectral bands designed for detection

of the red colouration of current budworm defolia-

tion worked well for classifying jack pine budworm
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discolouration. Only three or four well-placed spectral

bands are needed for a good classification. Accurate

classification (84%) of four levels of discolouration

was achieved. The portrayal of discolouration was

useful at the stand level as well as for patterns within

stands. Simple operationally feasible multispectral

imagery and techniques are appropriate. Resolutions

in the order of 2.5 m were sufficient, single tree

analysis was not necessary. Although hyperspectral

data and analysis was not needed, the ability of such

sensors to acquire data in the appropriate narrow bands

makes them suitable for such applications. Therefore,

information from such automated techniques can

provide useful input for mapping and monitoring

discolouration (current year defoliation), jack pine

budworm decision support systems, forest inventory,

harvest scheduling, salvage logging and planning

budworm control programs and thus can help with

determining forest management options.
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