A better alternative to Wald’s test-statistic for simple goodness-of-fit tests under one-stage cluster sampling

Steen Magnussen a,*, Michael Köhl b

a Natural Resources Canada, Canadian Forest Service, 506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
b University of Hamburg, Department of Wood Science, Section World Forest, Leuschnerstr. 91, D-21031 Hamburg, Germany

Received 16 May 2005; received in revised form 12 September 2005; accepted 13 September 2005

Abstract

Significance levels of the popular Wald’s Chi-squared statistic for simple goodness-of-fit (GOF) tests under one-stage cluster sampling are often unreliable. A large number of alternatives to Wald’s GOF test with Type-I error rates more closely matching the nominal level of significance have been proposed but not yet found their way into applied statistics. Type-I error rates with Wald’s test-statistic in cluster sampling from 10 actual forest cover-type maps from 5 sites and 81 sample designs are compared to the error rates of 11 alternatives. The effects of site, sampling design, evenness of cover-type class proportions, and intra-cluster correlation on Type-I error rates are quantified with logistic regressions for Wald’s statistic and five promising alternatives. Our proposed second-order bias correction of Finney’s [Finney, D.J., 1971. Probit Analysis, vol. 3. Cambridge University Press, p. 350] and Brier’s [Brier, S.S., 1980. Analysis of contingency tables under cluster sampling. Biometrika 67, 591–596] method of moments correction of Pearson’s Chi-squared test statistic emerged as the overall best alternative in this study. It was the least sensitive to design and cluster effects. Test power was investigated for the alternative simple hypothesis of equality of cover-type proportions in two site-specific maps. The proposed alternative test statistic had slightly (3%) less power than Wald’s test for designs with a power of 80% or greater, yet a consistently better odds ratio of a correct test decision.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Chi-squared statistic; Type-I error rate; Type-II error rate; Test power; Design-effect; Intra-cluster correlation; Method of moments; Bias correction; Logistic regression; Forest cover-types

1. Introduction

The goodness-of-fit (GOF) test of a simple hypothesis about a categorical attribute is frequently entertained in forest ecology and management. The test arises naturally when one wishes to compare a sample-based estimate of the distribution of class values of a categorical variable against, for example, a benchmark distribution. Tests concerning distributions of age-classes, forest cover-types, soil-types, and land-use are but a few examples.

Categorical forest attribute data are often obtained from sampling (inventory). For practical and cost reasons, it is customary to make several observations at each sample location (Shiver and Borders, 1996). A sample plot with more than one observational unit is called a cluster in statistical terminology (Cochran, 1977). In forestry a unit can be, for example, a tree, a specified portion of a plot, or a sub-plot. Units within a cluster often tend to be more similar in terms of class attribute values than units sampled at random (Ridout et al., 1999). When this is the case, we say that there is a positive intra-cluster correlation of class attribute values (Gilliland et al., 2002; Hall and Severini, 1998; Stoner and Leroux, 2002). A statistical consequence of a positive intra-cluster correlation (cluster effect) is that the variation among clusters with, say, m units in each cluster is larger than the variance among groups of m randomly selected units. Note, the intra-cluster correlation is class-specific and may vary among classes. A positive intra-cluster correlation may or may not be of consequence in the context of statistical testing and inference (Legendre, 1993). It depends on the hypothesis and the assumptions accompanying the statistical test (Dale and Fortin, 2002; Gregoire, 2004).
The most popular GOF test statistics are Pearson’s Chi-squared statistic (χ^2), the likelihood ratio statistic (G^2), and Wald’s generalized (χ^2_W) statistic (Agresti, 1992; Lloyd, 1999). It is well known that both χ^2 and G^2 are seriously inflated by “cluster effects” when data come from a sample design employing clusters or strata (Bedrick, 1983; Cerioli, 2002a, 1997; Clifford et al., 1989; Cohen, 1976; Holt et al., 1980; Rao and Scott, 1981). An inflated test statistic increases the risk of falsely rejecting a null hypothesis (Type-I error rate). The inflation of the Type-I error rate will depend on the class-specific intra-cluster correlation coefficients (Rao and Scott, 1981; Cerioli, 2002b).

Wald’s Chi-squared test statistic generalizes readily to a complex sampling design (Koch et al., 1975). However, it relies on asymptotic expectations and a design-consistent estimator of the covariance matrix under the null hypothesis. In practice sample sizes may be too small to justify asymptotic expectations, and a sample-based estimate of the covariance matrix is used in place of a design-consistent estimate of the covariance matrix under the null hypothesis (Rao and Scott, 1981). Wald’s test-statistic is, therefore, quite sensitive to the covariance matrix under the null hypothesis and data from cluster sampling offorest cover-types. Thus, a total of 30 cover-type maps were produced in five sites (Suratman et al., 2004) and references therein; Thomas and Rao, 1987). A first-order moment correction of Wald’s test statistic are included. Since a test statistic must also exhibit a good power to reject the null hypothesis when it is false, we also assessed test power (Lehmann, 1983). The GOF test statistic that improved the odds of making a correct decision from a simple hypothesis test at a nominal significance level $\alpha = 0.05$ is recommended for practical use.

2. Material and methods

2.1. Sample data

Ten forest cover-type maps, two from each of five sites, were used to simulate one-stage simple random cluster sampling of forest cover-types. Each cover-type map was completely tessellated into a regular array of $N = 30 \times 30$ m units, each assigned to a specific cover-type. Cover-type maps from a single site were the result of a classification of a Landsat TM image or an interpretation of aerial photography. Two maps from a single site would differ due to the method of classification or due to temporal land-use changes. Sites are referred to as A, B, C, D, and E while map types within a site are labelled I and II, respectively.

Site A – near Prince George British Columbia (Canada) – cover-type data are from a classification of $N = 121,104$ units in a 348×348 array (10,899 ha) of Landsat TM image pixels from 1990 (map A.I) and 1999 (map A.II) to 15 cover-type classes (Wulder et al., 2002).

Site B – near Hinton, Alberta (Canada) – data are from a classification of $N = 129,600$ units in a 360×360 array (11, 664 ha) of Landsat TM image pixels from 1985 (map B.I) and 1990 (map B.II) to 16 cover-type classes (Goodenough et al., 2000).

Site C – near Latium, Viterbo (Italy) – data are from a photo-interpretation (map C.I) and a classification of $N = 119,133$ units (10,720 ha) in an array of Landsat-7 ETM+ image pixels (map C.II) to six cover-types classes (Corona et al., 2002).

Site D – near Sussex, New Brunswick (Canada) – data are from a photo-interpretation (map D.I) and a classification (map D.II) of $N = 135,806$ units (12,223 ha) Landsat TM pixels to 11 cover-type classes (Magnussen et al., 2004).

Site E – near Kuala Lumpur (Malaysia) – data are from a 1989 (map E.I) and a 1999 (map E.II) classification of $N = 166,467$ units (14,982 ha) in a Landsat TM image to eight cover-type classes (Suratman et al., 2004).

Site specific cover-type classes were collapsed to simplified cover-type maps with three, four, or five broadly defined cover-types. Thus, a total of $5 \times 2 \times 3 = 30$ cover-type maps were available for simulated one-stage cluster sampling.

2.2. Sample strategy

Simple random one-stage cluster sampling with n plots (clusters) composed of a square array of m units ($m = 9, 16, 25,$ or 36) was simulated for each cover-type map. Sampling on
sites A, B, and E was with plots of size 9, 16, and 25 (Magnussen et al., 2004) while plots of size 9, 16, and 36 were employed in sites C and D (Magnussen, 2004).

Sample sizes \(n \) were 20, 40, \ldots, 100, 150, \ldots, 300. Sampling under each design \(s \) of plot size \((m) \times \) sample size \((n) \times \) number of cover-type classes, \(K = (3, 4, 5) \) was repeated 2000 times. A total of \(3(K) \times 3(m) \times 9(n) = 81 \) designs were employed for each of the \(5 \times 2 \) cover-type maps to a total of 810 designs.

For the \(i \)th sample plot \((i = 1, \ldots, n) \) the vector \(y_i = \{ y_{i1}, y_{i2}, \ldots, y_{ik} \} \) of cover-type class counts was noted \((K = 3, 4, 5) \). A sample-based estimate of the cover-type class proportions under design \(s \) was obtained as:

\[
\hat{p}_i = \frac{1}{n_s} \sum_{i=1}^{n_s} p_i = \frac{1}{n_s \times m_s} \sum_{i=1}^{n_s} y_i
\]

where \(p_i \) is the \(K \) length vector of class proportions in the \(i \)th plot. Suffixes identifying sites (A, B, E) and maps (I and II) have been suppressed for notational convenience. The sample-based estimate of the covariance matrix \(\Sigma_s \) of \(\hat{p}_i \) was obtained by standard calculus (Lehmann, 1983) and adjusted for finite population size by a factor \(f_s = 1 - n_s \times m_s \times N^{-1} \).

Map-wide cover-type class proportions \(\hat{p}_s \) for \(K = 3, 4, 5 \) are in Table 1. For \(K = 3 \), the most prevalent cover-type occupies between 39% and 69% of a study site, and the least common type between 3% and 23%. With \(K = 5 \), the corresponding figures were 21–67% and 1–17%, respectively. Within-site class-specific map differences averaged 5.2% (range 0–11%).

2.3. Test statistics

A simple GOF test under the true null hypothesis \(H_0 : \hat{p}_s = p_s \) was carried out for each of the 1,620,000 estimates of \(p_s \) (10 maps \(\times \) 81 design \(\times \) 2000 replicates).

Wald’s test-statistic \((\chi^2_W) \) and 11 alternatives were computed for each hypothesis test. Computational details are only provided for \(\chi^2_W \) and the five most promising alternatives (see below). Nine of the 11 alternatives have been detailed, among others, by Rao and Scott (1981), Thomas and Rao (1987), and Thomas et al. (1997). The nine previously tested alternatives were: \(G_F \), an F-ratio transform of the likelihood ratio test statistic \(G^2 \), \(G^2_{RS} \), a jackknifed estimate of \(G^2 \), \(F_W \) an F-ratio transform of Pearson’s Chi-squared test statistic \(\chi^2 \), \(\chi^2_{RS1} \) a first-order Rao–Scott correction of \(\chi^2 \), \(\chi^2_{RS2} \) a second-order correction of \(\chi^2 \), \(F_{RS1} \) an F-ratio transform of \(\chi^2_{RS1} \), \(F_{RS2} \) an F-ratio transform of \(\chi^2_{RS2} \), \(\hat{\chi}^2_F \) Fellegi’s Chi-squared statistic, and \(\hat{\chi}^2_{RW} \) Singh’s robust version of \(\chi^2_W \). The last two have not been formally evaluated. They were \(\chi^2_C \) Finney’s (1971) and Brier’s (1980) method of moments corrected Chi-squared statistic, and \(\hat{\chi}^2_C \) our proposed second-order bias correction of \(\chi^2_C \).

Computational details are only provided for Wald’s statistic and five of the most promising alternatives (see below). Wald’s GOF test statistic (Wald, 1941) is:

\[
\hat{\chi}^2_W = n_s \times (\hat{p}_s - p^*_s)^2 \Sigma_s^{-1} (\hat{p}_s - p^*_s)
\]

where \(p^*_s \) denotes the first \(K \) elements of \(p_s \) and \(\Sigma_s^{-1} \) denotes the inverse of the sample-based estimate of the covariance matrix of \(\hat{p}_s \). Under the null and a consistent estimate of the covariance matrix \(\hat{\Sigma}_s \) is asymptotically distributed as a Chi-squared random variable with \(K - 1 \) degrees of freedom.

To correct for ‘cluster effects’ a first-order correction factor \(\delta \) to \(\chi^2 \) has been proposed by several authors:

\[
\hat{\chi}^2_{RS1} = \hat{\chi}^2_s \hat{\lambda}^{-1} \quad \text{and} \quad \hat{\lambda} = \text{tr}(\hat{p}_s^* \hat{\Sigma}_s) \times (K - 1)^{-1}
\]

where \(\chi^2_s \) is Pearson’s Chi-squared test statistic

\[
\hat{\chi}^2_{RS2} = n_s \times m_s \sum_{k=1}^{K} \frac{(\hat{p}_k - p_k)^2}{p_k}
\]

Table 1

<table>
<thead>
<tr>
<th></th>
<th>A.I</th>
<th>A.II</th>
<th>B.I</th>
<th>B.II</th>
<th>C.I</th>
<th>C.II</th>
<th>D.I</th>
<th>D.II</th>
<th>E.I</th>
<th>E.II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K = 3)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>39</td>
<td>50</td>
<td>65</td>
<td>67</td>
<td>63</td>
<td>63</td>
<td>69</td>
<td>63</td>
<td>62</td>
</tr>
<tr>
<td>2</td>
<td>38</td>
<td>28</td>
<td>28</td>
<td>16</td>
<td>18</td>
<td>16</td>
<td>34</td>
<td>29</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>23</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>(K = 4)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>39</td>
<td>50</td>
<td>65</td>
<td>67</td>
<td>67</td>
<td>62</td>
<td>59</td>
<td>51</td>
<td>43</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>23</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>34</td>
<td>29</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>19</td>
<td>15</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>7</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>8</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>(K = 5)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>26</td>
<td>65</td>
<td>67</td>
<td>67</td>
<td>62</td>
<td>59</td>
<td>27</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>23</td>
<td>15</td>
<td>7</td>
<td>34</td>
<td>29</td>
<td>24</td>
<td>17</td>
<td>23</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>7</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>24</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>18</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>19</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>18</td>
<td>14</td>
</tr>
</tbody>
</table>

All entries have been rounded to the nearest integer percent value.
\(\hat{p}_s \) is the estimated proportion of the \(s \)th class, and \(\hat{P}_{s} = D(\hat{p}_s) - \hat{p}_s \hat{p}_s' \) the multinomial covariance matrix of \(\hat{p}_s \), and \(tr \) is the trace operator yielding the sum of the elements on the diagonal in a square matrix. \(\hat{\lambda} \) is an estimate of the average (across classes) ‘cluster effect’. Under \(H_0 \) and no among-class variation in the intra-cluster correlations \(\hat{\chi}^2_{RS1} \) is distributed asymptotically as a Chi-squared random variable with \(K - 1 \) degrees of freedom.

Fellegi (1980) proposed an \(F \)-ratio transform of the Chi-squared GOF test statistic. \(F \)-ratio transforms of Chi-squared statistics are more conservative (fewer rejections of the null hypothesis) especially for smaller sample sizes (\(n < 80 \)) and \(K > 3 \). Application of the \(F \)-transform to \(\hat{\chi}^2_{RS1} \) yields:

\[
\hat{F}_{RS1} = \frac{n_s - K + 1}{(K - 1)(n_s - 1)} \times \hat{\chi}^2_{RS1}
\]

where under \(H_0 \) \(\hat{F}_{RS1} \) is asymptotically distributed as an \(F \)-ratio variable with \(K - 1 \) and \(n_s - K + 1 \) degrees of freedom, respectively.

Holt et al. (1980) and Rao and Scott (1981) argued for a second-order adjustment of \(\lambda \) to capture the effect of variation among classes in the intra-cluster correlations. Their Sattherthwaite-type correction yields:

\[
\hat{\chi}^2_{RS2} = \hat{\chi}^2_{RS1} \times (1 + \hat{d}^2)^{-1}
\]

where

\[
\hat{d}^2 = \frac{\sum_s \sum_{s'} \hat{\sigma}_{ss'} (\hat{p}_s \hat{p}_{s'})^{-1} - K \times \hat{\lambda}^2}{(K - 1)\hat{\lambda}^2}
\]

(7)

where \(\hat{\sigma}_{ss'} \) is the sample estimate of the covariance of \(p_s \) and \(p_{s'} \) (i.e. the elements of \(\hat{\Sigma}_s \)). Under \(H_0 \) \(\hat{\chi}^2_{RS2} \) is asymptotically distributed as a Chi-squared random variable with \(v \) degrees of freedom with \(v = Rnd[(K - 1)/\{(1 + \hat{d}^2]\})].

Finney (1971) and later Brier suggested a simple intuitively appealing method of moments correction of Pearson’s Chi-squared statistics \(\hat{\chi}^2_C = \hat{\chi}^2 \times \hat{C}^{-1} \) with

\[
\hat{C} = \frac{1}{(n_s - 1)(K - 1)} \sum_{s=1}^{n_s} \left(y_s - m_s \times \hat{p}_s \right)^2 / m_s \times \hat{p}_s
\]

(8)

Intuitively appealing because \(C \) is the average Chi-squared statistic for testing equality of the \(n_s \) cluster-specific probability vectors \(\hat{p}_s \), divided by the degrees of freedom \((K - 1) \). In absence of cluster effects the expected value of \(C \) is one. \(C \) is, asymptotically, free of any unknown parameters. The allowed range for \(\hat{C} \) is between 1 and \(m_s \), values of \(\hat{C} \) outside this range are truncated to the nearest allowed value.

A second-order Taylor-Series expansion of (8) around \(m_s \times \hat{p}_s \) will show that the correction factor \(C \) is downward-biased. We, therefore, propose the test statistic:

\[
\hat{\chi}^2_{BC} = \hat{\chi}^2 \times (\hat{C} + \hat{\omega})^{-1} \quad \text{with} \quad \hat{\omega} = \frac{1}{K} \sum_{k=1}^{K} \frac{\hat{p}_k^2 + \hat{\sigma}_k^2}{n_s \times m_s \times \hat{p}_k^2}
\]

(9)

Again, the allowed range for \(\hat{C} + \hat{\omega} \) is also between 1 and \(m_s \), with values outside of this range truncated as above. Note, a bootstrap estimation of \(C \) would also correct for this bias (Efron and Tibshirani, 1993).

2.4. Type-I error

The performance of each test statistic is measured in terms of the Type-I error rate, viz. the rate of rejection (\(\hat{d}_s \)) of a true \(H_0 \) at a nominal significance level of \(\alpha \). Here, \(\alpha = 0.05 \) as it remains the most common level in applied statistics. For each test statistic and the 810 design combinations we counted the number of times the true null hypothesis was falsely rejected in 2000 replications of a sample design (\(\# \)reject) and computed \(\hat{d}_s = \# \text{reject} \times 2000^{-1} \). With 2000 replications, the standard error of \(\hat{d}_s \) is approximately 0.005 (Serfling, 1980). Results with \(\alpha = 0.01 \) and \(\alpha = 0.10 \) were very similar (not shown).

A ranking of the observed error rates of the 12 test statistics was obtained for each of the 810 designs. The ranking criterion was Abs[0.05 − \(\hat{d}_s \)]. A test statistic with a ranking of 6 or higher in 75% of the 810 design settings was eliminated from further consideration. Only the above five alternative test statistics were retained after this screening. Wald’s statistic would have been eliminated by this screening, but it was retained for reason of comparison.

2.4.1. Predicting Type-I error rates

The Type-I error rate of an ideal test statistic under the null should closely match the nominal significance level \(\alpha \) and it should not depend on ‘nuisance’ effects like sample size, plot size, number of classes, ‘site’ factors, or ‘cluster effects’. To summarize the ‘nuisance’ effects on observed Type-I error rates we fitted a logistic regression model (Hosmer and Lemeshow, 1980) with \(\hat{d}_s \) as the dependent variable and an intercept (constant), design factors (\(n_s \) and \(m_s \)), an index of evenness of \(\hat{p}_s \), and the average intra-cluster correlation as independent predictors. It is known that Chi-squared tests are sensitive to the ‘evenness’ of class proportions. We used Simpson’s index of evenness of proportions (Patil, 1982) which is computed as

\[
\hat{p}_s(1 - \hat{p}_s).
\]

Simpson’s index reaches a maximum when all class proportions are equal and a minimum when class proportions tend towards the extremes of 1 and 0. Simpson’s index is restricted to values between 0 and 1.

A logistic regression model for an ideal test statistic would have an intercept of \(\log(0.05) = -2.99573 \) and no statistically significant ‘nuisance’ effects. A comparison of estimated logistic regression coefficients allows us to quantify the sensitivity of a test statistic to ‘nuisance’ factors. In this regression context, the two cover-type maps per site are regarded as within-site replications.

2.5. Type-II errors

In practice the analyst will, of course, not know whether a simple test hypothesis is true or not. Provided the test statistic is consistent the analyst controls Type-I errors through the choice of \(\alpha \). It is, of course also important not to accept a hypothesis when it is false (Type-II error). For a given design and significance level the best test statistic is the one that minimizes
the Type-II error rate \(\beta \) while keeping the Type-I error rate at the nominal level. A minimum Type-II error rate provides maximum test power \((1 - \beta)\) for discrimination between hypotheses at a fixed \(\alpha \).

To evaluate \(\beta \), we formulated the alternative simple hypothesis \(H_1 \) stating that a sample-based estimate of cover-type proportions for map I was equal to the known cover-type proportions of map II (and vice versa). Tests of this nature arise naturally in applied settings where one might, for example, compare estimates from remotely sensed images to estimates from ground-based sampling. Here, the alternative hypothesis \(H_1 \) is false (Table 1). The Type-II error rate \(\beta \) of a test statistic is the number of times \(H_1 \) is accepted divided by the number of replicate tests of the hypothesis.

2.5.1. Odds of a correct test decision

For a given \(\alpha \) and a given sample design, a test statistic presents a trade-off between Type-I and -II errors. The decision to reject or accept a hypothesis is made on the significance of the test statistic. The chance of a correct acceptance or rejection of a hypothesis is captured by the (log) odds ratio of a correct decision \(\psi \) (Fleiss, 1981)

\[
\psi = \log \left(\frac{\text{correct acceptance of } H_0 + \text{false acceptance of } H_1}{\text{correct rejections of } H_1 + \text{false rejections of } H_1} \right)
\]

(10)

where the logarithm provides a convenient scaling. We computed \(\psi \) for all 810 design settings.

3. Results

Site and map specific average Type-I error rates (\(\hat{\alpha}_c \)) of Wald’s statistic and the five best alternatives are in Table 2. For Wald’s statistic, the error rate was significantly above the nominal 5% level on all sites \((P < 0.05)\). In addition, the variability of Type-I error rates obtained with Wald’s statistics is an order of magnitude larger than expected from random variation due to sampling, and also about four to five times larger than the variability observed with the five best alternatives. Strongly inflated error rates were concentrated in designs with small sample sizes and five cover-types.

Type-I error rates of the five best alternatives to Wald’s GOF test statistics are clustered much more closely around the nominal level of 5%. Not only are the rates much closer to 5% but their variability is also substantially less. An \(F \)-transform of \(\hat{\chi}^2_{RS1} \) improves slightly the performance of the first-order correction of Pearson’s Chi-squared statistic. A second-order correction (\(\hat{\chi}^2_{RS2} \)) generates a conservative test with fewer rejections than at the nominal significance level. Finney’s (1971) and Brier’s (1980) method of moments correction of Pearson’s Chi-squared test statistics appears overall attractive in terms of average absolute deviation from \(\alpha \), consistency across sites (maps), and a low variability of error rates. Our proposed bias-correction of this statistic (\(\hat{\chi}^2_{BC} \)) mostly improves performance. An improvement that was approximately equal to the effect of an \(F \)-transform of a Chi-squared test statistic. Type-I error rates of \(\chi^2_{BC} \) were most often (52%) the alternative closest to the nominal level and only occasionally (9%) the alternative furthest away. Only one in seven of the observed error rates for \(\chi^2_{BC} \) differed significantly from the nominal level. The corresponding figure for \(\chi^2_W \) was two in three. The runner up to \(\chi^2_{BC} \) was \(\chi^2_C \) with a ratio of one in five. \(\chi^2_{BC} \) is not uniformly better than \(\chi^2_W \). However, in the 14% of the 810 test scenarios where the Type-I error rate of Wald’s was closer to the nominal level their differences were trivial (average 0.3%) and never exceeded 0.5%. A graphical summary of the Type-I error rates in Fig. 1 captures the erratic performance of Wald’s test and the improved performance of the alternatives, in particular that of \(\chi^2_{BC} \).

The sensitivity of Type-I error rates to ‘nuisance’ effects is captured by the logistic regression coefficients in Table 3. An ideal test statistic would show no sensitivity to these factors. All error rates were significantly influenced by ‘site’ but \(\hat{\alpha}_c(\chi^2_C) \) and \(\hat{\alpha}_c(\chi^2_{BC}) \) were the least affected with an average absolute site coefficient of just 0.06 compared to 0.15 for Wald’s, and a surprisingly high average of about 0.5 for \(\hat{\chi}^2_{RS1}, \hat{\chi}^2_{RS2}, \text{ and } \hat{\chi}^2_{BC} \). Effects of \(K \) were non-significant for \(\hat{\alpha}_c(\chi^2_C) \) and \(\hat{\alpha}_c(\chi^2_{BC}) \) but highly significant for the others. Type-I error rates of \(\chi^2_W, \chi^2_{BC}, \chi^2_{RS1}, \text{ and } \chi^2_{RS2} \) increased at a rate of about 20–40% for every increase in the number of cover-type

<table>
<thead>
<tr>
<th>Site.Map</th>
<th>(\chi^2_W)</th>
<th>(\chi^2_{RS1})</th>
<th>(\hat{\chi}^2_{RS1})</th>
<th>(\chi^2_{RS2})</th>
<th>(\hat{\chi}^2_{RS2})</th>
<th>(\chi^2_{BC})</th>
<th>(\hat{\chi}^2_{BC})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.I</td>
<td>7.5 (3.7)</td>
<td>5.5 (0.8)</td>
<td>5.2 (0.7)</td>
<td>4.4 (0.6)</td>
<td>5.6 (0.9)</td>
<td>5.3 (0.7)</td>
<td>5.3 (0.7)</td>
</tr>
<tr>
<td>A.II</td>
<td>7.6 (3.8)</td>
<td>5.7 (1.0)</td>
<td>5.4 (0.8)</td>
<td>4.5 (0.6)</td>
<td>5.7 (0.9)</td>
<td>5.4 (0.7)</td>
<td>5.4 (0.7)</td>
</tr>
<tr>
<td>B.I</td>
<td>11.7 (7.7)</td>
<td>5.9 (1.6)</td>
<td>5.6 (1.4)</td>
<td>4.9 (1.0)</td>
<td>4.6 (1.5)</td>
<td>4.5 (0.6)</td>
<td>4.5 (0.6)</td>
</tr>
<tr>
<td>B.II</td>
<td>11.4 (8.4)</td>
<td>6.3 (1.6)</td>
<td>6.0 (1.4)</td>
<td>4.7 (1.0)</td>
<td>5.3 (0.8)</td>
<td>5.0 (0.7)</td>
<td>5.0 (0.7)</td>
</tr>
<tr>
<td>C.I</td>
<td>7.4 (4.2)</td>
<td>6.0 (3.0)</td>
<td>5.7 (2.8)</td>
<td>5.4 (2.3)</td>
<td>5.4 (1.1)</td>
<td>5.0 (1.0)</td>
<td>5.0 (1.0)</td>
</tr>
<tr>
<td>C.II</td>
<td>9.0 (6.0)</td>
<td>4.3 (2.0)</td>
<td>4.3 (1.9)</td>
<td>4.0 (1.6)</td>
<td>5.9 (0.9)</td>
<td>5.6 (0.7)</td>
<td>5.6 (0.7)</td>
</tr>
<tr>
<td>D.I</td>
<td>8.3 (4.3)</td>
<td>4.3 (0.7)</td>
<td>4.0 (0.6)</td>
<td>4.0 (0.6)</td>
<td>5.2 (0.6)</td>
<td>4.9 (0.6)</td>
<td>4.9 (0.6)</td>
</tr>
<tr>
<td>D.II</td>
<td>7.9 (3.4)</td>
<td>3.3 (0.8)</td>
<td>3.2 (0.7)</td>
<td>3.0 (0.6)</td>
<td>5.5 (0.6)</td>
<td>5.2 (0.5)</td>
<td>5.2 (0.5)</td>
</tr>
<tr>
<td>E.I</td>
<td>8.4 (4.4)</td>
<td>5.0 (0.7)</td>
<td>4.7 (0.6)</td>
<td>4.7 (0.6)</td>
<td>5.0 (0.6)</td>
<td>4.8 (0.6)</td>
<td>4.8 (0.6)</td>
</tr>
<tr>
<td>E.II</td>
<td>9.0 (4.9)</td>
<td>5.3 (0.8)</td>
<td>5.0 (0.6)</td>
<td>4.7 (0.6)</td>
<td>5.3 (0.8)</td>
<td>5.0 (0.6)</td>
<td>5.0 (0.6)</td>
</tr>
<tr>
<td>All</td>
<td>8.8 (5.5)</td>
<td>5.2 (1.7)</td>
<td>4.9 (1.5)</td>
<td>4.4 (1.2)</td>
<td>5.4 (0.9)</td>
<td>5.1 (0.8)</td>
<td>5.1 (0.8)</td>
</tr>
</tbody>
</table>

Standard deviations of error rates are in brackets. Nominal error rate is 5%.
Fig. 1. Histograms of Type-I error rates (α) for Wald’s GOF test statistic X^2_W and five of the best alternatives (see text for details). Nominal significance level (α) = 5%. Relative frequencies are in % of 810 estimates of α each based on 2000 replicates of a specific combination of sample design, site, and cover-type map.

Table 3
Maximum likelihood estimates of the regression coefficients in the logistic model predicting the Type-I error rate of Wald’s test-statistic $\hat{\alpha}(X^2_W)$ and of five alternatives ($\hat{\alpha}(X^2_{RS1})$, ... $\hat{\alpha}(X^2_{BC})$)

<table>
<thead>
<tr>
<th>Predictor</th>
<th>$\hat{\alpha}(X^2_W)$</th>
<th>$\hat{\alpha}(X^2_{RS1})$</th>
<th>$\hat{\alpha}(X^2_{RS2})$</th>
<th>$\hat{\alpha}(X^2_C)$</th>
<th>$\hat{\alpha}(X^2_{RS2})$</th>
<th>$\hat{\alpha}(X^2_{BC})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>0.228</td>
<td>-0.720</td>
<td>-0.989</td>
<td>-1.058</td>
<td>-2.925</td>
<td>-3.112</td>
</tr>
<tr>
<td>δ_h</td>
<td>-0.131</td>
<td>-0.488</td>
<td>-0.477</td>
<td>-0.475</td>
<td>-0.090</td>
<td>-0.069</td>
</tr>
<tr>
<td>δ_c</td>
<td>-0.210</td>
<td>-0.776</td>
<td>-0.781</td>
<td>-0.676</td>
<td>0.097</td>
<td>0.115</td>
</tr>
<tr>
<td>δ_d</td>
<td>0.046</td>
<td>-0.697</td>
<td>-0.727</td>
<td>-0.599</td>
<td>-0.008</td>
<td>-0.003</td>
</tr>
<tr>
<td>δ_x</td>
<td>0.203</td>
<td>-0.333</td>
<td>-0.360</td>
<td>-0.252</td>
<td>-0.036</td>
<td>-0.037</td>
</tr>
<tr>
<td>δ_s</td>
<td>0.395</td>
<td>0.241</td>
<td>0.249</td>
<td>0.186</td>
<td>0.011</td>
<td>0.001</td>
</tr>
<tr>
<td>m</td>
<td>-0.000</td>
<td>0.003</td>
<td>0.003</td>
<td>0.001</td>
<td>-0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>n_s</td>
<td>-0.041</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.000</td>
</tr>
<tr>
<td>Simpson</td>
<td>-5.779</td>
<td>-5.014</td>
<td>-4.869</td>
<td>-4.641</td>
<td>0.472</td>
<td>0.568</td>
</tr>
<tr>
<td>ρ</td>
<td>-4.066</td>
<td>-2.472</td>
<td>-2.291</td>
<td>-2.007</td>
<td>0.140</td>
<td>0.145</td>
</tr>
</tbody>
</table>

δ_{site} is an indicator variable taking the value of 1 if observations are from site and 0 otherwise (site = A, ..., E). Site A is taken as the reference for site estimates, i.e. $\delta_A = 0$. RMSE = root mean square error of model. R^2_{adj} = adjusted squared correlation coefficient. Shaded table entries are not statistically significant ($P \geq 0.05$).
classes \((P \leq 0.05)\). Plot size \((m)\) had only a minor effect on error rates. Wald’s test was the only test statistic with a significant effect of sample size. Its error-rate would decrease about 0.4\% for every cluster (plot) added to the sample. Wald’s test was the only test statistic with a significant effect of sample size. Its error-rate would decrease about 0.4\% for every cluster (plot) added to the sample. Evenness of cover-type proportions (Simpson’s index) had a very strong and significant impact on error rates of \(\hat{\chi}_W^2; \hat{\chi}_{RS1}^2; \hat{\chi}_{FRS1}^2; \) and \(\hat{\chi}_{RS2}^2\). Least and non-significantly impacted were \(\hat{\alpha}_{(\hat{\chi}_C^2)}\) and \(\hat{\alpha}_{(\hat{\chi}_{BC}^2)}\). A similar pattern were seen in the effect of the average intra-cluster correlation coefficient. Finally, one should notice that the only two logistic models with a constant term close to the nominal target of 2.996 for \(\alpha = 0.05\) are those for \(\hat{\alpha}_{(\hat{\chi}_C^2)}\) and \(\hat{\alpha}_{(\hat{\chi}_{BC}^2)}\).

Type-II error rates for the alternative test of equality of a sample-based estimate of map I cover-type proportions and map II proportions (and vice versa) for Wald’s test were, as expected, somewhat lower than for any of the five best alternatives. However, for the 65 site and map specific designs with a test power of 80\% or better (i.e. Type-II errors are less than 20\%) the differences were in the 0–5\% range with an average of 2.7\%. Typical results exemplified by sites D and E are in Fig. 2. For designs with a good test power (>90\%) the Type-II errors of the five best alternatives were within 1\% (average 0.3\%) of Type-II errors incurred with Wald’s test.

A simultaneous consideration of Type-I and -II errors shows that the bias-corrected version of Finney’s (1971) and Brier’s (1980) corrected Chi-squared test statistic provides the overall best odds of correctly accepting or rejecting a simple test hypothesis. For \(\chi_{BC}^2\), the log-odds ratio \(\psi\) was consistently higher (range 0.7–2.2, mean 1.1) than the log-odds ratio for \(\chi_W^2\) and also consistently the highest among the five best alternatives. Typical results exemplified by sites D and E are in Fig. 2.

4. An example of application

The practical consequence of switching from Wald’s test-statistic \(\hat{\chi}_W^2\) to \(\hat{\chi}_{BC}^2\), apart from an expected general lowering of the Type-I error rates, depends, of course, on the decision riding on the statistical inference. If it is a simple matter of either non-rejection or acceptance of a null hypothesis the switch will lower the rate of rejections when the null hypothesis is true or we have low statistical power to reject the null when it is false. Often, however, the two test statistics will lead to the same conclusion. For example, when testing \((\alpha = 0.05)\) the null hypothesis of equality of a sample-based estimate \((n = 40, m = 16)\) of relative cover-type frequencies \((K = 4)\) for map I and a census result for map II (i.e. \(\hat{p}_I = p_I\)) the null hypothesis was rejected jointly by the two test statistics in 1806–1992 cases out of 2000 on sites A, B, D, and E. On site C, the squared distance between \(\hat{p}_I\) and \(p_I\) is considerably smaller than on any other site and the agreement is accordingly weaker (60\%). Our example will be from site C with the above design settings. To appreciate the example we should mention that the design, despite an appreciable sampling effort of 640 units, only has a
statistical power of about 22% to declare an average difference of 5% in relative cover-type frequencies significant at the 5% level of significance. A claim of statistical significance should, therefore, a priori, be carefully scrutinized.

Sample data for the example are in the Appendix A. The sample mean of cover-type proportions for map I is \(\hat{p}_I = \{0.640, 0.005, 0.333, 0.022\} \) while the census estimate for map II is \(\hat{p}_{II} = \{0.592, 0.041, 0.294, 0.073\} \). Note that two sample-based estimates are close to zero. As mentioned earlier, this has negative implications for the performance of Wald’s test. The sample variance-covariance matrix of relative cover-type proportions was (rounded to nearest 0.001) was:

\[
\hat{\Sigma} = \begin{pmatrix}
0.165 & 0.001 & -0.150 & -0.004 \\
0.001 & 0.001 & -0.002 & -0.000 \\
-0.150 & -0.002 & 0.152 & -0.005 \\
-0.004 & -0.000 & -0.005 & 0.009 \\
\end{pmatrix} \tag{11}
\]

Wald’s test-statistic after dropping results for the second cover-type (Eq. (2)) is hereafter:

\[
\hat{\chi}^2_W = 40 \times (0.048, 0.04, -0.051)^T \\
\begin{pmatrix}
61.363 & 47.472 & 61.220 \\
47.742 & 115.367 & 59.361 \\
61.220 & 59.361 & 67.796 \\
0.048, 0.04, -0.051 \end{pmatrix} = 18.49 \tag{12}
\]

The probability of obtaining a Chi-squared statistics with 4 − 1 degrees of freedom larger than 18.49 under the null hypothesis is 0.0004. Had we chosen Wald’s test-statistic we would conclude that there were significant differences between the sample (from map I) and the census from map II. Pearson’s Chi-squared statistic (Eq. (4)) for the same data is \(\hat{\chi}^2 = 49.00 \) and Brier’s correction factor (Eq. (6)) came to \(\hat{C} = 6.91 \). Our bias correction of \(\hat{C} \) (Eq. (9)) amounted to \(\hat{\omega} = 0.32 \). Accordingly, \(\hat{\chi}^2_{BC} = 6.78 \) with \(P(\hat{\chi}^2 \geq \hat{\chi}^2_{BC}) = 0.08 \). Hence, if we adopt Brier’s bias-corrected test statistic (Eq. (9)) and test at the 5% level of significance, we would have some support of the null hypothesis and would unlikely outright reject it. In light of the low statistical power of the chosen sample design the latter result is more reasonable than a rejection of the null hypothesis. The near null results for two cover-types should, everything else equal, signal problems with Wald’s test.

5. Discussion and conclusion

Our assessment of Type-I error rates of Wald’s GOF test statistic under the simple null hypothesis and one-stage cluster sampling of categorical data confirmed its sensitivity to factors like the number of classes, evenness of class proportions, intra-cluster correlation, and ‘site’. This dependency is a nuisance to the applied statistician since an observed significance level is likely skewed by one or more of these ‘nuisance’ effects. The logistic regression models derived from this study may serve to gauge their impact. Of the many available alternatives to Wald’s test-statistic five appears to offer consistent and significant improvements in Type-I error rates and the odds of a correct decision to either reject or accept a simple GOF hypothesis. These benefits come at the expense of a small loss of test power, least for designs with a high test power (>90%), more for designs with low or medium test power (<80%).

Six test statistics evaluated by Thomas and Rao (1987) and Thomas et al. (1997) as reasonable alternatives to Wald’s statistic performed too erratically in this study to be of much practical value. The simulations by Thomas and Rao (1987) and later Thomas et al. (1997) were simplified to equal probable classes and a constant (among classes) intra-cluster correlation of 0.12. Class proportions are rarely equal in ecological data and the intra-cluster correlation of categorical classes is often stronger, at least when the area of a ‘patch’ with a single categorical class value is a multiple of the plot size (Cerioli, 1997; Ferguson and Bester, 2002; Garcia-Gorollo and Saura, 2005; Lichstein et al., 2002; Magnussen, 2001; Reed and Burkhart, 1985). The demonstrated sensitivity of most test statistics to ‘evenness’ of class proportions, intra-cluster correlation, and ‘site’ confirms the importance of assessing GOF test statistics with realistic data.

Type-I error rates of the five best alternative GOF test statistics were also dependent on one or more ‘nuisance’ effects. Our proposed bias-correction of Finney’s (1971) and Brier’s (1980) method of moments correction of Pearson’s Chi-squared test statistic was, however, by far the least sensitive. In consequence it showed the most consistent performance in this study. In light of these results it may seem surprising that Finney’s and Brier’s method of moments correction has not been formally evaluated. Both Finney and Brier mention that their correction performed well in some non-specified Monte Carlo simulations but no results were given. We surmise that the necessary simplifications of artificially generated data unwittingly ‘masked’ the robust property of this statistic, which, as far as we can tell, is the primary attribute responsible for its improved performance vis-à-vis alternatives based on Taylor-Series approximation or Jacknifing. The truncation of the correction factor to the allowed range of values achieves the ‘robustness’. Our proposed bias-correction simply improves the overall performance in a non-negligible and consistent way.

The form of Finney’s and Brier’s test statistic lend itself seamlessly to a bootstrap procedure. In an earlier study (unpublished), we demonstrated a simple implementation of such a procedure. A bootstrapped version of Brier’s and Finney’s test statistic would eliminate the need for our proposed bias-correction.

We restricted our study to sampling with plots of a complete set of \(m \) units. In practice units will be missing from some plots due to, for example, straddling of population boundaries. Brier’s and Finney’s method of moments correction adapts easily to data with missing observations. A correction factor is computed separately for plots with 0, 1, \ldots, \(m-1 \) missing observations and then combined into a weighted average. In a separate study (unpublished), we found this scheme to work well for data with 5%, 10%, and 15% of the units in a plot missing at random. No simple recourse to address
the impact of missing data is readily available for Wald’s test-statistic or any other of the studied alternatives.

Continued use of Wald’s test for a simple GOF null hypothesis under one-stage cluster sampling with significant design effects should be discouraged. A better alternative is proposed here. An alternative with only slightly less test power for designs with good test power (>80%) but with a consistent improvement in the odds of making a correct decision to either reject or accept a simple hypothesis. We reiterate that this conclusion is limited to simple GOF hypotheses. Studies by, among others, Thomas et al. (1997) indicate that the need for an alternative to Wald’s GOF test involving a non-linear function of class proportions, as in the test of independence of rows and columns in a contingency table, is less clear.

Acknowledgements

We are grateful to Drs. P. Corona, D. Goodenough, M.N. Suratman, and M.D. Wulder, and the New Brunswick Department of Natural Resources and Energy, Forest Management Branch for making the forest cover-type maps available to us. Two anonymous reviewers made helpful suggestions for improvements.

Appendix A

Sample data \((y_{ij})\) for detailed example. Site C: sample size \(n = 40\), plot-size \(m = 16\) units, number of cover-types \(K = 4\). Sampling from photo-interpreted forest cover-type map. \(y_{ij}\) = number of cover-type \(j\) units in sample plot \(i\). Note samples 21 and 22 have fewer than 16 units. They are both located near the edge of the cover-type map I and have, respectively, eight and four units outside the sampling frame.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cover type 1</th>
<th>Cover type 2</th>
<th>Cover type 3</th>
<th>Cover type 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>0</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>4</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

Mean 10.05 0.08 5.23 0.35

References

