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Abstract  

Investigating the temporal and spatial pattern of landscape disturbances is an important 

requirement for modeling ecosystem characteristics, including understanding changes 

in the terrestrial carbon cycle or mapping the quality and abundance of wildlife habitats. 

Data from the Landsat series of satellites have been successfully applied to map a 

range of biophysical vegetation parameters at a 30 m spatial resolution, the Landsat 16 

day revisit cycle, however, which is often extended due to cloud cover, can be a major 

obstacle for monitoring short term disturbances and changes in vegetation 

characteristics through time.  

The development of data fusion techniques has helped to improve the temporal 

resolution of fine spatial resolution data by blending observations from sensors with 

differing spatial and temporal characteristics. This study introduces a new data fusion 

model for producing synthetic imagery and the detection of changes termed Spatial 

Temporal Adaptive Algorithm for mapping Reflectance Change (STAARCH). The 

algorithm is designed to detect changes in reflectance, denoting disturbance, using 

Tasseled Cap transformations of both Landsat TM/ETM and MODIS reflectance data. 

The algorithm has been tested over a 185 x 185 km study area in west-central Alberta, 

Canada. Results show that STAARCH was able to identify spatial and temporal 

changes in the landscape with a high level of detail. The spatial accuracy of the 

disturbed area was 93% when compared to the validation data set, while temporal 

changes in the landscape were correctly estimated for 87% to 89% of instances for the 

total disturbed area. The change sequence derived from STAARCH was also used to 

produce synthetic Landsat images for the study period for each available date of 
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MODIS imagery. Comparison to existing Landsat observations showed that the change 

sequence derived from STAARCH helped to improve the prediction results when 

compared to previously published data fusion techniques.  

 

Key words:  Landsat, MODIS, change detection, disturbance, synthetic imagery, 

STARFM, STAARCH, data blending, EOSD 
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1. Introduction 

Natural and anthropogenic disturbances play a key role in terrestrial ecosystem 

functioning (Schimel et al. 1997; Hansen et al. 2001; Foster et al. 2003), and influence 

productivity and resource availability across a broad range of spatial and temporal 

dimensions.  In forested environments, disturbance agents such as fire, insects, and 

various human activities related to settlement, cultivation, and resource extraction 

create pulses of biomass loss that influence biogeochemical cycling (DeFries et al. 

1999; Patenaude et al. 2005; Morehouse et al. 2008, Masek and Collatz 2006), and 

exert a strong imprint on both habitat structure (Mladenoff et al. 1993; Spies et al. 1994; 

Turner et al. 1997) and the distribution of wildlife species (Foster et al. 2003; Nielsen et 

al. 2004; Linke et al. 2005, Lada et al. 2008; Leonard et al. 2008). As a result, detailed 

information on forest disturbance is important for a wide range of applications from 

ecological modeling to estimating carbon budgets on regional and global scales. 

Remote sensing is a critical data source for observing and understanding the effects of 

landscape disturbance (e.g. Potter et al. 2003; Linke et al. 2008a, Masek et al. 2008), 

but trade-offs in sensor designs that balance spatial detail with concerns for swath width 

and repeat coverage (Price 1994) can limit our capacity monitor changes effectively 

(e.g. Gao et al. 2006; Pape and Franklin 2008).  

 

Landsat, with a spatial resolution of 30 m and spatial extent of 185 x 185 km per scene, 

is used widely for mapping biophysical vegetation parameters (Cohen and Goward 

2004; Masek et al. 2006) and has proven useful for monitoring land cover (Wulder et al. 

2008; Linke et al. 2009) and ecosystem disturbance (Healey et al. 2005; Masek et al. 
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2006; Masek et al. 2008). The minimum 16-day revisit cycle of the platform, however, 

which can be markedly extended due to cloud contamination or duty cycle limitations 

(Ju and Roy, 2008) can create difficulties in capturing disturbance events in a timely 

manner (Gao et al. 2006; Leckie 1990; Pape and Franklin 2008). This can be a major 

concern, particularly in humid environments (Ranson et al. 2003; Roy et al. 2008b; Ju 

and Roy, 2008), where the probability of acquiring cloud-free Landsat imagery for a 

given year (cloud cover <10%) can be as low as 10% (Leckie 1990). 

 

One technique for increasing the temporal frequency of high-spatial-resolution satellite 

observations is the blending of data from sensors with complementary spatial and 

temporal characteristics, with the aim of generating synthetic observations with both 

high spatial and temporal resolutions. For example, Gao et al. (2006) introduced the 

Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to blend Landsat 

and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate 

synthetic Landsat-like imagery with a spatial resolution of 30 m on a daily basis. In 

another approach, Hansen et al. (2008) and Potapov et al. (2008) used regression trees 

to integrate Landsat and MODIS imagery to monitor deforestation in Africa and North 

America. A similar technique was also reported by Roy et al. (2008) for use in Landsat 

gap-filling and relative radiometric normalization procedures. Most data-fusion models 

use the high-spatial-resolution imagery to capture spatial details on the landscape, and 

incorporate the high-temporal-frequency data is used to describe changes over time. 

Previous research has shown this general approach to be successful for monitoring 

seasonal patterns in vegetation cover (Gao et al. 2006; Hilker et al. 2008) and larger 
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changes in land use (Hansen et al. 2008; Potapov et al. 2008).  However, such data-

fusion approaches are often based on spatially integrating reflectance observations and, 

as a result, are not specifically designed for mapping disturbance events, particularly if 

they occur in the sub-pixel range of the coarse-spatial-resolution image data.  

 

Landsat-based detection of disturbances (e.g. Cohen et al., 2002; Franklin et al., 2001; 

Seto et al., 2002) commonly use image transformations such as the Tasseled Cap 

transformation (Crist & Cicone, 1984; Kauth & Thomas, 1976) to consolidate 

multispectral reflectance measurements and enhance the detection of disturbance 

events. The Tasseled Cap transformation reduces the Landsat reflectance bands to 

three orthogonal indices called brightness, greenness and wetness, and is a standard 

technique for describing the three major axes of spectral variation across the solar 

reflective spectrum measured by Landsat (Kauth and Thomas 1976). Once an image is 

transformed into its Tasseled Cap data spaces, image arithmetic and thresholding 

techniques can be used to automatically identify and classify land cover changes and 

land cover disturbance  (e.g. Cohen et al. 2002; Franklin et al. 2001; Healey et al. 

2005).  

 

While the 30-m spatial resolution of Landsat makes this data source highly suitable for 

detecting and delineating common disturbance events on the landscape (Masek et al. 

2008; Wulder et al. 2004), the daily global revisit rate of MODIS offers attractive 

temporal capabilities. Although the Tasseled Cap transformation was originally 

developed for early Landsat sensors (Multispectral Scanner and Thematic Mapper) 
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(Crist and Kauth 1986; Crist and Cicone 1984; Kauth and Thomas 1976), its linear 

coefficients have more recently been modified for applicability to Enhanced Thematic 

Mapper Plus (ETM+) imagery (Huang et al. 2001) and the MODIS land bands (Zhang et 

al. 2002). As a result, it is also possible to use Tasseled-Cap transformation-based 

techniques on MODIS imagery to detect landscape disturbance at higher temporal 

resolutions. A data fusion approach can therefore be designed to capture high 

resolution spatial changes from Tasseled Cap Landsat observations, while the high 

frequency of MODIS observations can be used to accurately determine the time at 

which a given disturbance occurred.  

 

In this study, we propose and validate a new spatially- and temporally-adaptive data 

fusion model for detection of disturbance and reflectance changes.  The Spatial 

Temporal Adaptive Algorithm for mapping Reflectance Change (STAARCH) is based on 

a small number (two or greater) of Landsat images and a temporally dense stack of 

spatially coincident MODIS imagery. The algorithm yields both a spatial change mask 

(derived from Landsat) and an image sequence which records the temporal evolution of 

disturbance events (derived from MODIS). STAARCH also includes functionality for 

estimating surface reflectance, based on an extended version of STARFM (Gao et al. 

2006). In this paper, we first develop the theoretical basis of STAARCH, and then 

demonstrate its application over a 185 x 185 km study area in west-central Alberta, 

Canada. Results were compared to a validation disturbance dataset which specifies the 

location and timing of anthropogenic and natural disturbance entities occurring in the 
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study area between 2002 and 2005. Finally, we also compared estimated surface 

reflectance generated by STAARCH with Landsat observations collected in 2004.  

 

2. Approach 

2.1 Algorithm inputs and processing steps 

In Figure 1 we present an overview of the processing steps implemented in STAARCH, 

which are described in detail below. The algorithm requires a minimum of two Landsat 

scenes; one at the beginning and one at the end of the observation period, enabling the 

development of a change mask for input to the algorithm. The change mask is used to 

delineate the spatial extent of disturbance events occurring within the time frame 

represented by the Landsat image pair. The date of disturbance is then determined from 

a series of  MODIS images, usually acquired at eight-day time steps between the dates 

of the Landsat images. STAARCH also uses a Landsat-derived land cover classification 

product to identify the expected land cover type of each pixel (from before the 

disturbance) and assess its reflectance relative to the average reflectance of the given 

land-cover class. Change detection in STAARCH is restricted to the vegetated land 

surface, with change features suppressed for non-vegetated land cover classes.  
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Figure 1: Flow chart of the STAARCH implementation. The algorithm is based on a two step implementation; 
the spatial extend of land cover disturbance is determined first using yearly Landsat imagery and disturbed 
pixels are being flagged. 

 

2.3 Detection of spatial changes per land cover type 

The spatial delineation of disturbance features are determined by STAARCH at 30 m 

spatial resolution using a change mask derived from Landsat imagery. Change 

detection is performed using the Disturbance Index (DI) described in Healey et al. 

(2005), an index specifically designed to detect changes in forested land cover types. 

The DI is a transformation of the Tasseled Cap data space and is calculated using the 

three Tasseled Cap indices (brightness, greenness and wetness) from Landsat 

TM/ETM+ data (Crist and Kauth 1986; Healey et al. 2005; Kauth and Thomas 1976; 
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Masek et al. 2008). At a basic level, the DI records the normalized spectral distance of 

any given pixel from a nominal “mature forest” class to a “bare soil” class (Healey et al. 

2005). The index is computed as a linear combination of the three normalized Tasseled 

Cap values:  

B

BB
Br


  (1) 

G

GG
Gr


  (2) 

W

WW
Wr


  (3) 

where Br, Gr, Wr are the normalized (rescaled) brightness, greenness, and wetness, 

indices respectively, and B , G  and W and B , G , W are mean and standard deviation 

of these three Tasseled Cap spaces. The re-scaling process normalizes pixel values 

across Tasseled Cap bands with respect to overall changes in reflectance, such as 

seasonal changes or changes induced by directional reflectance effects, thereby 

effectively minimizing seasonal variability in the imagery. The Disturbance Index 

(DILandsat) is then defined as a linear combination of the three normalized Tasseled Cap 

spaces (Healey et al. 2005): 

)( rrrLandsat WGBDI   (4) 

In their original algorithm, Healey et al. (2005) computed B , G  and W as arithmetic 

mean of all forested pixels which were identified from pre-existing maps, and defined 

disturbance by thresholding DILandsat. While this technique has proven useful for forested 

environments (Healy et al., 2005) it may be less suited to detect disturbances in more 
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heterogeneous landscapes as the natural variability of B , G , W is expected to be 

relative high. In STAARCH, an external land cover classification product was used to 

compute the mean and standard deviation of the three Tasseled Cap spaces separately 

for each vegetated land cover type. This technique was applied to minimize the 

standard deviation used to normalize Br, Gr, Wr while increasing the sensitivity of 

DILandsat to individual disturbance events.   

 

To verify the vegetation cover of a given pixel, a normalized difference vegetation index 

(NDVIr) is computed relative to the mean of the NDVI of each land cover type, in a 

manner analogous to eqn. 1-3: 

NDVI

NDVINDVI
NDVIr


   (5) 

where NDVI  and NDVI are the mean and standard deviation the NDVI of each land 

cover class, respectively. Landsat pixels are flagged as “disturbed” if a series of three 

conditions were fulfilled: 

1. The DI of a pixel reaches a given threshold; in this study, we selected a value of 

+2, which roughly corresponds to units of standard deviation used for normalizing 

the forest population (Healey et al. 2005; Masek et al. 2008).  Pixels must start 

below this DI threshold before reaching it in order to be flagged as disturbed.  

2. The DI of at least one of its immediate neighbours also reaches this threshold.  

This condition acts to reduce the amount of noise in the image through elimination of 

pixel outliers 
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3. The normalized Tasseled Cap brightness, wetness, and NDVIr do not exceed a 

specified threshold. This condition is implemented to reduce noise in the transition 

zones between vegetated and non-vegetated land cover classes and possible noise 

related to shading effects. In this study we chose values of -3, -1 and 0, for Br, Wr 

and NDVIr, respectively (for instance, a logged or burned area is unlikely to show an 

increase in NDVIr or a large decrease in brightness or larger increase in wetness).  

 

2.4 Automated detection of cloud contamination in Landsat scenes 

Disturbance of vegetation for temporally obscured areas such as due to cloud or snow 

contamination is challenging (Irish et al 2006), and as a result an automatic method was 

used for identifying and excluding these areas. The cloud and snow cover mask 

implemented in STAARCH is based on the Automated Cloud-Cover Assessment 

(ACCA) algorithm (Irish 2000; Irish et al. 2006). ACCA uses a series of eight filtering 

techniques to identify cloud contamination and snow cover in Landsat data based on 

reflectance brightness, surface temperature (from the Landsat thermal band) and 

several band ratios to eliminate highly reflective vegetation, senescing vegetation, and 

highly reflective rocks and sands. The core of ACCA is a Landsat Band 5/6 (Mid-

IR/Thermal-IR) composite to identify cold, yet highly reflective areas (i.e., clouds and 

snow) (Irish 2000), with snow being distinguished from clouds by means of the 

normalized difference snow index (NDSI) (Hall et al. 1995) based on the reflectance of 

band 2 and 5 (Green and Mid-IR wavelengths).  
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2.5 Detection of temporal changes in land cover  

The implementation of STAARCH is based on the MOD09/MYD09 product, which 

provides eight-day composites of daily MODIS surface reflectance, thereby effectively 

minimizing cloud contamination present in daily MODIS acquisitions (Vermote et al., 

1997, Vermote et al. 2000). For reasons of compatibility, it is desirable to extract similar 

disturbance information from Landsat and MODIS in order to facilitate the identification 

of particular disturbance events. As opposed to the Landsat Tasseled-Cap 

transformation which is based on Landsat bands 1-5 and 7, Zhang et al. (2002) 

demonstrate the use of the 7 MODIS land bands to extract disturbance information at a 

500 m spatial resolution. Table 1 gives an overview of the MODIS-based Tasseled-Cap 

coefficients (Zhang et al. 2002).  

 
Table 1: Tasseled Cap coefficients for MODIS (Zhang et al., 2006) 

 
Band name  Red Near-IR Blue Green M-IR M-IR M-IR 

MODIS(nm) 620-670 841-876 459-479 545-565 
1230-
1250 

1628-
1652 

2105-
2155 

Brightness 0.3956 0.4718 0.3354 0.3834 0.3946 0.3434 0.2964 

Greenness -0.3399 0.5952 -0.2129 -0.2222 0.4617 -0.1037 -0.46 

Wetness 0.10839 0.0912 0.5065 0.404 -0.241 -0.4658 -0.5306 

 

The MODIS-derived Tasseled-Cap data spaces for brightness, greenness and wetness 

are used by STAARCH to compute a DIMODIS analogous to the DI obtained from Landsat 

(Healey et al. 2005). The normalization process (eqn. 1-3) was, however, simplified to 

use the arithmetic mean and standard deviation of all vegetated land cover classes, 

instead of differentiating between individual vegetation types.  The reason for this is that 

MODIS, with its 500 m spatial resolution, will almost always observe a mixture of 

different land cover types within a given pixel. A certain decline in disturbance 
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predictability can be expected when comparing Landsat and MODIS imagery (Collins 

and Woodcock 1996; Jin and Sader 2005; Zhan et al. 2002; Pape and Franklin 2008) 

owing to the differences in spatial resolution and signal-to-noise ratio of both sensors. 

When aided by the Landsat-derived change mask, however, we hypothesized that, at 

least to up to a certain degree, the MODIS based disturbance index should indicate the 

time interval at which a particular disturbance event occurred, even if the disturbed area 

is below the size of a MODIS pixel, since there should still be a noticeable increase in 

DIMODIS.  

STAARCH identifies the date of disturbance (DoD) of a flagged pixel (that is, a pixel 

marked as disturbed using DILandsat) by computing a moving average of the DI values of 

each of three subsequent MODIS composites collected in between the two Landsat 

acquisition dates ( MODISDI ). For instance, the first disturbance value in such a MODIS 

time sequence ( MODISDI 1) is computed using the first three MODIS scenes acquired 

following the first Landsat scene, the second DI value ( MODISDI 2)  is computed using 

MODIS scenes 2-4, and so on. The eight day time period at which a given pixel was 

disturbed is then identified by comparing each MODISDI  value for this pixel )..1( nMODISDI  to 

the minimum and maximum (
MINMODISDI and 

MAXMODISDI ) of all MODISDI values within the 

sequence: 

 
MINMAXMIN MODISMODISMODISMODIS DIDItDIDI 

 (5) 

where t is the threshold value to identify land cover change, for this study it was defined 

as 
3

2
t . The time of disturbance is determined from the first MODISDI that satisfy the 
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above condition (eqn 5). The MOD09/MYD09 quality flags were used to determine 

cloud contamination and other low-quality pixels, and low quality values were then 

automatically eliminated from the disturbance detection.  

 

2.6 Algorithm outputs  

The main output of STAARCH is a disturbance sequence image in which all pixels that 

have been flagged as disturbed are assigned an integer value which corresponds to the 

8-day time interval at which a disturbance event occurred. For instance, if a pixel has 

been most likely disturbed at T5 in a given MODIS sequence T1..Tn (with n being the 

total number of MODIS images acquired) this pixel will be assigned a value of 5. Pixel 

values of areas that haven’t been disturbed at all are assigned a value of 0 (Figure 1). 

Optionally, intermediate results, such as the Landsat change mask and the Landsat and 

MODIS derived disturbance indices can also be written to file.  

 

STAARCH also allows the output of synthetic 30 m Landsat-like predictions of surface 

reflectance, based on the STARFM algorithm (Gao et al. 2006). (Please note, the term 

“prediction” is used in this paper in the context of estimating high resolution reflectance 

by fusing multiple data sources). STARFM generates Landsat-like, or synthetic Landsat, 

images from a spatially weighted difference computed between a Landsat and a MODIS 

scene acquired at a base date (T1), and one or more MODIS scenes acquired at a 

prediction date (TP). In the implementation of Gao et al. (2006), spectral information 

from the Landsat-7 ETM+ or Landsat-5 Thematic Mapper sensor was synthesized to 

match the locations of Landsat ETM+ bands 1-5 and 7 with their corresponding MODIS 
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land bands. A moving window technique was used to minimize the effect of pixel 

outliers using the spatially weighted mean of all pixels within the window area. Either 

surface or top-of-atmosphere reflectance may be used, provided the comparable 

products are used for both the MODIS and Landsat inputs.  

In the original STARFM model, changes were considered by introducing a temporal 

(changing) weight. This weight was defined as the combination of distance weight, 

spatial weight and temporal weight. Temporal weight was determined by the changes of 

predicting MODIS data between two input data pairs. The input data pair with less 

change in MODIS observations would receive the higher weight. This technique has 

proven useful for detecting gradual changes occurring over larger areas such as 

seasonal changes in vegetation cover (Gao et al., 2006), but it seems less optimized to 

detecting disturbances that occur fast and are restricted to smaller areas. This is due to 

the coarse spatial resolution of MODIS and due to the fact an image acquired after a 

disturbance event will only obtain higher temporal weights when the time span between 

the actual disturbance event and the MODIS acquisition data is significantly shorter than 

that between the disturbance and the acquisition date from the MODIS scene before 

this event. As a result of these considerations, a significant change to the STARFM 

algorithm as introduced by Gao et al. (2006) was made in that the base image pair (T1) 

upon which a prediction is made is now being of the first (T1) and the last (Tn) MODIS 

and Landsat scenes of a given time series, depending upon which image pair best 

describes the land cover situation of a given pixel at the time of prediction. For instance, 

if the prediction date of an image lies before a particular area was disturbed (TP<DoD), 

then the base information for a pixel in this area will be derived from the first Landsat 
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and MODIS scene (T1), because this image pair better represents the land cover type 

for the prediction date in this area. Conversely, if a pixel value is being predicted for the 

time after a given area was disturbed (TP DoD), the base information for the pixels in 

this area will be derived from the last MODIS and Landsat image pair (Tn) as this pair 

will consider the detected change in land cover in this area. Reflectance values for 

pixels that have not been flagged as disturbed are being predicted from the first Landsat 

and MODIS scene (Gao et al., 2006). 

 

 

3. Algorithm testing 

3.1 Image data 

The algorithm was applied at a site in west-central Alberta, Canada (53o 9’ N, 116o 30’ 

W) corresponding to WRS-2 Path 44 / Row 23 for which the types and year of 

disturbance were known and could be validated using an independent data source 

described below. Three cloud-free (cloud cover <10 %) Landsat-5 TM scenes were 

acquired between 2002 and 2005 (Table 2) through the USGS GLOVIS portal 

(http://glovis.usgs.gov/). The images were atmospherically corrected using the cosine 

approximation model (COST) (Chavez, 1996, Wu et al., 2005) and radiometrically 

normalized (Hall et al. 1991) with respect to the 2005 imagery in order to simplify the 

comparison between the data. 

Table 2: Landsat acquisition dates and use of Landsat scenes. 
Sensor Acquisition date 
Landsat ETM 2002/08/08 
Landsat ETM 2004/08/13 
Landsat ETM 2005/09/17 
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A total of 110 eight-day MODIS composites (MOD09A1/ MYD09A1) with a spatial 

resolution of 500 m were obtained from the EOS data gateway of NASA’s Goddard 

Space Flight Center (http://redhook.gsfc.nasa.gov) for the growing season (March 15th – 

October 15th) between 2002 and 2005. The MODIS data were reprojected to the 

Universal Transverse Mercator (UTM) projection using the MODIS reprojection tool 

(Kalvelage and Willems 2005), clipped to the extent of the available Landsat imagery, 

and resampled to a 30 m spatial resolution using a nearest neighbour approach.  

 

3.2 Land cover classification  

In this implementation of STAARCH, we used a Landsat-7 land cover classification of 

the forested area of Canada produced for the Earth Observation for Sustainable 

Development of Forests (EOSD) initiative, a collaboratation between the Canadian 

Forest Service and the Canadian Space Agency (Wulder et al. 2003), aided by support 

from all provinces and territories. The EOSD land cover classification product is based 

upon unsupervised classification, hyperclustering, and manual labelling of Landsat TM 

and ETM+ data, thereby facilitating the classification of land cover types over larger 

areas (Franklin and Wulder, 2002; Slaymaker et al., 1996; Wulder et al., 2003). The 

EOSD product represents circa year 2000 conditions, and captures land cover 

information based on 30 m spatial resolution Landsat imagery, with products resampled 

to 25 m.  EOSD land cover data were downloaded from the EOSD data portal 

(http://www4.saforah.org/eosdlcp/nts_prov.html) and clipped to the extent of the study 

area. The particular EOSD product utilized for this study is based upon a Landsat image 

collected in 2002. Figure 2 contains an overview of the dominant land cover types 
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present in the image, mainly coniferous forest (comprised of largely of lodgepole pine 

(Pinus contorta var. latifolia), and white spruce (Picea glauca) with some presence of 

Douglas-fir (Pseudotsuga menziesii var. menziesii) with subsidiary herbal and shrub 

vegetation and patches of water and rocks. Land cover patches are generally large, the 

landscape can, however, be quite heterogeneous within some areas due to harvesting 

activities and related cut-blocks and access road networks.  

 

Figure 2: Map of the EOSD land cover types found in the study area. The most dominant land cover type in 
the study area is dense coniferous forest (51%), followed by dense broadleaf forest cover and herbs (10% 
each) and 8% wetland in the north-west. About 10% of the total land cover is classified as non-vegetated 
surface (rock, snow/ice and water).  

 

3.3 Disturbance validation data set 
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We acquired the validation data set from a disturbance inventory feature database 

developed by the multi-annual disturbance mapping project of Linke et al. (2009).  This 

project delineated forest-replacing disturbance features in polygon-vector format from 

annual difference layers, derived from an annual series of summer Landsat Thematic 

Mapper and Enhanced Thematic Mapper Plus spanning the years 1998 to 2005.  The 

inventory contains information on the year of origin and type of individual disturbance 

events, obtained using an integrated approach of automated segmentation and manual 

digitization methods described fully in Linke et al. (2009).  Areal disturbance features 

(cut blocks, mines, forest fires) were identified through automatic segmentation of 

thresholded difference images, which provided the basis for delineating individual 

disturbance entities.  These features were subsequently labeled on the basis of size, 

shape and context.  Delineations and classifications were visually compared with the 

Landsat imagery and manually cleaned where necessary.  Because of the high 

precision applied during manual verification, and specialized boundary-alignment 

corrections (see Linke et al. 2008b), the detection accuracy of this validation data set 

was assessed at 100%, and the classification accuracy was 98% (Linke et al. 2009).  

 

3.4 Validation experiment 

STAARCH is designed to predict changes in land cover and disturbance at eight-day 

time steps, based upon the availability of MOD09/MYD09 composites. We designed a 

validation protocol of STAARCH using the disturbance validation data set (section 3.3) 

in order to test the capability of STAARCH to correctly determine DoD across a multi-

year time period using MODIS. The validation protocol was applied under the 
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assumption that if stand-replacing disturbance information could be correctly extracted 

from eight-day MODIS data at yearly time steps, it follows that they could also be 

derived at higher temporal resolutions with transferable accuracy results, since the 

underlying physics (sensor properties) and the prediction algorithm remain unchanged. 

Note that this assumption is reasonable only for stand replacing disturbance events for 

which the spectral changes due to disturbance are expected to be much greater than 

seasonal changes in vegetation cover. The effect of seasonal variation is minimized 

through the landcover normalization process described above.  

 

In this study we used Landsat scenes from 2002 and 2005 to capture the disturbances 

that occurred during these years in the study area and the intervening MODIS scenes to 

predict their DoD. The predictions were then compared to the year of disturbance 

known from the validation disturbance dataset and the percentage of the correctly 

classified disturbed area was determined.  The Landsat scene acquired at 2004/08/13 

was not used for predicting disturbances and was set aside for validating the 

disturbance predictions made in STAARCH. An area of 1500 m x 1500 m was selected 

as the moving window size for synthetic Landsat predictions and the uncertainties of 

Landsat and MODIS surface reflectance were set to 0.002 and 0.005 for the visible and 

the NIR bands, respectively (Gao et al. 2006). 

 

4. Results 

4.1 Mapping the spatial extent of disturbances 
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The cloud cover algorithm used in STAARCH successfully detected cloud and snow 

cover in the selected Landsat scenes, thereby masking and excluding areas of high 

uncertainty that are frequently the site of false positive error. Figure 3 shows the result 

of the cloud and snow cover assessment implemented in STAARCH for the example of 

the 2005 Landsat image. The original Landsat scene is shown in Figure 3a, with the 

inset in 3b enabling a comparison to the superimposed cloud and snow-cover mask. 

The ACCA algorithm implemented in STAARCH accurately identified cloud and snow 

cover in the image, with the exception of a small hazy area (covering about 0.5% of the 

image) in the southern part of the scene.  

 

Figure 3: Cloud and snow mask ACCA for the 2005 Landsat image. 

 

DILandsat effectively highlighted disturbance information at a 30 m spatial resolution. 

Figure 4a shows the reflectance of the green Landsat channel as observed in 2002, 

with a few cut blocks and access roads visible in the image (for illustration purposes, 
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only a small subset of the entire scene is shown). Figure 4b shows the disturbance 

index computed from the 2002 Landsat scene, wherein the bright areas correspond to 

the disturbance visible in Figure 4a. The number of cut-blocks increased notably 

between 2002 and 2005 (Figure 4c). Figure 4d illustrates the DI of the 2005 Landsat 

image, revealing that the index effectively highlighted the disturbances shown in Figure 

4c. Disturbance events caused considerable shifts in the range of DILandsat on a local 

scale, illustrated by the histograms of the pixel distribution of DILandsat for the area shown 

in Figure 4 (Figures 5a and b). While the relatively undisturbed scene in Figure 4b yields 

a near normal distribution of DILandsat values, the distribution of DILandsat found in Figure 

4d is skewed towards the positive end of the pixel range. However, the average 

Tasseled Cap values used to normalize DILandsat per land cover class over the entire 

scene remained almost constant between 2002 and 2005. 
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Figure 4: Comparison between Landsat TM reflectance (Band 3) in 2002 (Figure 4a) and 2005 (Figure 4c) and 
the disturbance index computed for these two observations (Figure 4b and Figure 4d, respectively). Dark 
DILandsat pixels correspond to undisturbed areas, disturbances are highlighted in white. 
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Figure 5: Pixel distribution of the 2002 (Figure 5a) and the 2005 (Figure 5b) DILandsat image for the example of 
the focus area shown in Figure 4. While the largely undisturbed scene in 2002 yields a nearly normal 
distribution of the pixel values, the 2005 image is skewed towards the positive end of the pixel range 

 

Figure 6 gives an example of the change mask derived from DILandsat showing all areas 

that were disturbed between 2002/08/08 and 2005/09/22. The area shown in the Figure 

corresponds to the area shown in Figure 4. Over the entire scene, the Landsat based 

disturbance algorithm successfully identified 93% of the total disturbed area delineated 

by the validation data set. The average size of disturbance features detected was 

104,790 m2, or 0.41 MODIS pixels, with a standard deviation of 195,764 m2, or 0.78 

MODIS pixels.  
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Figure 6: Landsat derived change mask between 2002 /08/08 and 2005/09/21. The mask was derived from the 
difference in disturbance of the two Landsat images. The area shown in this example corresponds to the 
image shown in Figure 4.  

 

4.2 Mapping the date of disturbance 

The MODIS disturbance index (DIMODIS) was successfully used to highlight disturbance 

events in the eight-day composites. Figure 7a-c shows an example of DIMODIS computed 

for three MODIS scenes acquired at 2002/08/13, 2004/08/13 and 2005/09/22, 
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respectively. In the Figure 7 series, the bright areas correspond to the disturbances 

shown in Figure 4.  The gradual increase in the total area disturbed can be observed 

also in these coarse-spatial-resolution images. The DIMODIS values were a slightly higher 

compared to those derived from the Landsat images ( MODISDI =0.30 = 0.15 for the 

MODIS scene acquired at 2002/08/13; MODISDI =0.26, = 0.13; for the MODIS scene 

acquired at 2004/08/13, and MODISDI =0.31, = 0.13 for the MODIS scene acquired at 

2005/09/22).  
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Figure 7: MODIS derived disturbance index (DIMODIS) for the example of the MODIS scenes acquired at 
2002/08/13, 2004/08/13 and 2005/09/22, respectively. Bright pixel values correspond to the disturbances, the 
pattern shown in Figure 4 is clearly observable also from these coarser spatial resolution images. 

 

STAARCH was able to predict the date of disturbance in the 185 km x 185 km test area 

with a high level of accuracy. Figure 8 shows a comparison between the disturbance 

sequence acquired from STAARCH (predicted at a yearly resolution) and the dates 
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acquired from the validation disturbance dataset. The color of the polygon outline 

corresponds to the year of disturbance determined from the validation data set; the 

color of the polygon hatch corresponds to the year of disturbance acquired from 

STAARCH. A spatial intersection of validation dataset- and STAARCH-derived 

disturbance polygons showed that the model was able to correctly identify 88%, 87% 

and 89% of the newly disturbed area at the correct time in 2003, 2004 and 2005, 

respectively. The mean area of correctly classified disturbances over the three years 

was 169,265 m2 or 0.69 MODIS pixels = 262,439 m2 (=1.04 MODIS pixels). The mean 

area of those disturbances that remained unidentified was 47,408 m2 or 0.19 MODIS 

pixels = 43,275 m2 (=0.17 MODIS pixels). The total area of misclassified disturbances 

throughout the entire Landsat scene was <10,750 m2 or <0.04% of the total study area.  
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Figure 8: Comparison between yearly disturbances derived from the validation data set and STAARCH 
determined year of disturbance. The date of disturbance for all polygons, that show the same color for 
outline and fill, has been correctly identified by the algorithm; polygons that show a different outline color 
than filling have been misclassified by STAARCH. The area of correctly identified disturbances was 87%, 
87% and 89% in 2002, 2003 and 2005, respectively. 

 

Figure 9a-c shows three eight-day sequences of the disturbance events in 2003, 2004 

and 2005, respectively. The colors of the disturbed areas correspond to the eight-day 

time intervals at which disturbances were predicted to have occurred. Figure 10 shows 

an overview of the total disturbed area per eight-day time step for 2003, 2004 and 2005, 

respectively. Disturbance events typically occurred during the early summer months, 
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while the total disturbed area per eight-day interval, as depicted in Figure 10, decreases 

towards the end of the growing season. The peak in disturbance activity found in the 

mid-May, 2003, corresponds to a wildfire that occurred in the south western region of 

the Landsat image.    

 

Figure 9: Sequences of eight-day disturbance intervals for the year of 2003 (Figure 9a), 2004 (Figure 9b) and 
2005 (Figure 9c), respectively. The colors of the disturbed areas corresponds to the 8-day time intervals at 
which disturbances most likely occurred (derived from STAARCH). 
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Figure 10: Total disturbed area per 8 day time step for 2003, 2004 and 2005, respectively. Most disturbance 
events occurred during the early summer months, while the total disturbed area per 14 day interval 
decreases towards the end of the growing season. The peak in the mid-May data from 2003 corresponds to a 
wildfire occurring in the south western region of the Landsat image.    

 

4.3 Comparison to STARFM 

The change detection algorithm implemented in STAARCH is considerably different to 

the prediction of surface reflectance based on STARFM. Figure 11a shows the 

observed Landsat scene acquired at 2004/08/13. Figure 11b shows the corresponding 

STARFM prediction using an unmodified version of the algorithm as described by Gao 

et al. (2006). While the prediction yields a high quality 30 m image, the algorithm fails to 

describe the temporal aspect of disturbance (at least at a sub-pixel range), since only 

those regions that were already disturbed in the 2002 Landsat base scene were 
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predicted with their correct land cover type. All the cut blocks occurring after 2002/08/08 

were still modelled as forested. This is not unexpected, since this functionality is beyond 

the initial STARFM algorithm specification. Figure 11c shows the prediction result of the 

modified STARFM algorithm based on STAARCH. The modified algorithm yields a 

considerably improved description of the disturbances with nearly all disturbance events 

shown in the original observation (Figure 11a) also being predicted by the STAARCH 

algorithm (Figure 11c).  
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Figure 11: Landsat scene observed at 2004/08/13. Figure 11b shows the corresponding STARFM prediction 
using an unmodified version algorithm as introduced by Gao et al. (2006). While the prediction yields a high 
quality 30 m image, the algorithm fails to describe the newly occurring disturbance events (at least at a sub-
pixel range) whereas the STAARCH derived image (Figure 11c) includes most of the changes due to 
Landscape disturbance  
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Discussion  

This study described the implementation and testing of a new data fusion model used to 

detect changes in land cover at eight-day time steps and at a 30m spatial resolution. 

The algorithm was tested over a 185 x 185 km study area in west-central Alberta, 

Canada. The Landsat derived cloud cover assessment (Irish 2000; Irish et al. 2006) was 

successfully used to mask cloud cover in Landsat images, thereby helping to ensure the 

quality of STAARCH-derived disturbance predictions. Automated masking of cloud and 

snow cover is an important prerequisite for the prediction of disturbance events, as 

changes in land cover can only be assessed for cloud free observations (Cahalan et al. 

2001; Hall et al. 1995). While this study did not specifically investigate the effect of cloud 

shadow on surface reflectance, no evidence was found that cloud shading would have a 

noticeable impact on prediction of disturbance events. Further research may be 

required when more cloud contaminated scenes are being used.      

 

The disturbance index of Healey et al. (2006) proved to be a useful technique for 

determining the spatial extent of changes in land cover. The accuracy with which spatial 

changes have been predicted throughout the study area also confirms findings of 

previous authors (Healey et al. 2005; Masek et al. 2008) and shows that Landsat-based 

Tasseled Cap transformation is an effective tool for mapping changes in land cover and 

disturbance. It should be noted, however, that the disturbance index may be less useful 

in ecosystems types other than forests. For example, disturbances in wetter areas that 

reveal or result in standing water will likely be not well described by the DI as currently 

conceived. The results shown in Figure 6 confirm that DI=+2 was an effective threshold 
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for masking disturbance events from the normalized DILandsat (Healey et al. 2005). 

Although this algorithm has proven successful for automated masking of stand-

replacing disturbances such as cut blocks or stand-replacing fires, smaller disturbances, 

such as insect infestations or low-grade fire events, were not examined. Automatic 

detection of these kind of disturbances would be useful, particularly in the context of 

carbon modeling (Kurz et al. 2008). However, these may require further modifications to 

the detection algorithm (Coops et al. 2006; Franklin et al. 2003; White et al. 2007; 

Wulder and Dymond 2003). Further limitations of the algorithm in its current form 

include the detection of disturbances smaller than 2 Landsat pixels, as the noise 

reduction algorithm implemented in the software will limit the size of disturbance 

features that can effectively be mapped to this resolution. Additionally, detected 

disturbance events may occur in a more pixellated manner when compared to actual 

Landsat imagery which show rather sharp delination of disturbed areas (for instance in 

Figure 4). This is due to the raster based detection algorithm which utilizes coarser 

spatial resolution imagery. 

 

The MODIS-based Tasseled Cap transformation (Zhang et al. 2003; Zhang et al. 2002) 

was successfully used in this study to determine the time at which individual disturbance 

events occurred. Application of the MODIS-derived Tasseled Cap variables (brightness, 

greenness and wetness) were useful for generating a MODIS-based disturbance index 

similar to Healey (2005), with a detection accuracy of > 87%. The findings shown in 

Figure 8 confirm that the applied technique successfully identified disturbances at yearly 

time steps, however, no validation data was available that would allow the evaluation of 
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DoD at higher temporal resolutions. Additionally, it is apparent from Figure 8 that there 

are “false positives” in the image that is areas which are shown disturbed in the 

prediction dataset but not in the validation data. While some these areas have been 

flagged due to changes in phenology, a lot of these disturbances are actually existent 

but have not been listed in the validation data set such as apparent for some regions in 

the lower right of Figure 8. As a result, the proportion of “false positives” is harder to 

quantify in this dataset.  

 

Evaluation of disturbance events at 8-day time steps would be desirable, but is difficult 

to realize given the lack of high temporal resolution evaluation data over larger areas. 

As a result to this limitation to the analysis, Figures 9 and 10 may be regarded more as 

a demonstration of what the disturbances might look like when applying MODIS at 

shorter time intervals. However, since the underlying detection principles are 

independent of the time steps applied, the results shown in Figure 9 should in theory be 

equally applicable to data acquired at eight-day intervals, when only considering stand 

replacing disturbance events and over a limited observation period for which vegetation 

reflectance changes are expected to be smaller than changes due to disturbance 

events.  

 

The STAARCH algorithm in its present form does not allow for the detection or 

progression of individual disturbance events. For instance, a cut block may have been 

established over a few weeks, with its size increasing over time. However, the 

STAARCH algorithm is limited to a before and after delineation of each disturbance 



38 

 

event as obtained from Landsat, with the date of disturbance assigned at a much 

coarser spatial resolution. The date of disturbance determined by the algorithm is 

therefore more an indicator of when the main disturbance most likely occurred within a 

MODIS pixel-scale patch, and contains only limited information regarding the time frame 

over which a disturbance event progressed.  

 

The results of this study have shown that the MODIS disturbance index (DIMODIS) was 

able to determine the date of disturbance of areas well below the size of a MODIS pixel, 

which emphasises the capability of this index to capture change events. The detection 

accuracy of disturbance events from Landsat (93%) and MODIS (87%) are within the 

range of previous findings (Jin and Sader 2005; Moody and Woodcock 1994; Morton et 

al. 2005; Zhan et al. 2002) and underline the potential of combining these two data sets 

for prediction of high spatial and temporal resolution disturbance events. It should 

however be noted that those 87% are the results of the yearly validation dataset which 

was derived from Landsat ETM (Linke et al., 2009) and the accuracy may be different 

when observed at 8-day time steps.  Because the spatial location of disturbances is 

predicted exclusively from Landsat, predictions can best be made for the period 

between two (ideally cloud free) Landsat observations. This may limit the applicability of 

the algorithm to timely critical applications. It should also be noted that STAARCH 

predictions can only be made for those areas which are not obscured by clouds in either 

of the used Landsat scenes. This may restrict the applicability of the algorithm where no 

cloud-free observation exists for a given study period.  
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The increased level of detail with which STAARCH has produced synthetic-Landsat 

images (Figure 11) is an important result of this study. It should be noted, however, that 

the image quality of the predicted scene appears more “hazy” than the observed 

Landsat data (Figure 11c vs. Figure 11a), which is likely due to the mixing of high and 

low spatial resolution data. This may result in problems for some applications that may 

rely on more precise estimates of multi-spectral reflectance. Recent results on the 

fusion of Landsat and MODIS data for the generation of synthetic images suggest that 

data fusion is a useful technique for predicting seasonal changes in vegetation at a high 

spatial resolution, and offers new opportunities for infill of cloud or data-gaps resulting 

from the SLC-off condition of the ETM+ sensor (Gao et al. 2006; Hansen et al. 2008; 

Hilker et al. 2008; Roy et al. 2008a). Conventional fusion models are, however, 

generally not designed to consider stand-level disturbance events. The algorithm 

introduced in this paper builds upon the proven utility of STARFM to predict high-spatial-

resolution synthetic reflectance, while the MODIS-derived change sequence allows the 

algorithm choose a Landsat/MODIS base date (T1) that best describes the land cover 

type of a given pixel at the time of prediction. The resulting improved prediction of 

surface reflectance can add valuable information for a wide range of applications. 

Additional algorithm improvements include the capacity to add functionality to identify 

the type of disturbance. While this research has mainly been focused on forested areas, 

further research will be required to test the applicability of the presented algorithm in 

non-forested environments. We expect techniques such as the one introduced in this 

study will further advance data-blending techniques and the generation of high spatial- 

and temporal-resolution synthetic spectral observations.  
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Mapping disturbances with high spatial and temporal resolution has significant 

potentials for the modeling and ecological applications. For instance, a numerous 

remote sensing-driven and tower-calibrated ecological models rely upon temporally 

precise estimates of productivity (GPP, NPP) or gas exchange and, as a result, require 

accurate reporting of landscape level disturbance on a regular basis (Masek et al., 

2008). This advance may offer the community an opportunity to explore the relationship 

between disturbance and ecosystem processing at more meaningful temporal scales.  

Other applications include the mapping of wildlife habitats as well as monitoring 

changes in vegetation biophysical and structural attributes over large areas. 
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