Photosynthetic Pigments: A Bibliography

K.A. Stockburger and A.K. Mitchell

Information Report BC-X-383
Pacific Forestry Centre
Victoria, British Columbia
The Pacific Forestry Centre, Victoria, British Columbia

The Pacific Forestry Centre of the Canadian Forest Service undertakes research as part of a national network system responding to the needs of various forest resource managers. The results of this research are distributed in the form of scientific and technical reports and other publications.

Additional information on Natural Resources Canada, the Canadian Forest Service, and Pacific Forestry Centre research and publications is also available on the World Wide Web at http://www.pfc.cfs.nrcan.gc.ca/.

Forest Ecosystem Processes Network

Recent developments and advances by the forest sector in Canada have identified considerable shortfalls in the ecological knowledge base needed for sustainable forest management. This is not surprising when one considers the vastness and diversity of our forests and the complexity of forest ecosystems. However, the ability to forecast the outcomes of management decisions and natural disturbances on the composition and productivity of natural ecosystems is essential.

The Canadian Forest Service (CFS) Forest Ecosystem Process Network (FEPN) will use CFS research centres in Sault Ste. Marie, Ontario and Sainte-Foy, Quebec as lead centres, and will draw upon the talent and expertise of CFS scientists across the country. The network, in collaboration with industry, provinces, and universities, will conduct and coordinate a program of ecological research within forest ecozones of Canada. This program will focus on developing criteria and measurements for sustainable resource utilization and increase our ability to forecast how natural and man-made disturbances will shape the future forest landscape of Canada.
Photosynthetic Pigments: A bibliography

K.A. Stockburger and A.K. Mitchell
Canadian Forest Service
Pacific Forestry Centre

Natural Resources Canada
Canadian Forest Service
Pacific Forestry Centre

Information Report BC-X-383

1999
Contents

Abstract/Résumé ... v

Acknowledgements ... v

Introduction ... 1

History ... 1

Applications ... 1

The Bibliography ... 2

Photosynthetic Pigments ... 3

Chlorophyll ... 3

Carotenoids ... 4

Xanthophylls ... 5

Pigment Measurement ... 8

Extraction ... 8

Chromatography ... 11

Fluorescence ... 12

Reflectance ... 13

Environment ... 16

Light ... 16

Temperature ... 17

Nutrition ... 17

Water ... 19

Climate Change ... 19

Seasonal Change ... 21

Physiology ... 23

Conifers ... 23

Photoinhibition ... 24

Shade ... 26

Ecology ... 28

Pests and Disease ... 29

Cover illustration: Structure of chlorophyll a P700 of PS I *(adapted from* Goodwin and Mercer. 1983. *Introduction to plant biochemistry,* 2nd Ed. Pergamon Press.)*
Abstract

The chlorophyll content of plant tissue is often determined as a routine analysis in ecological and physiological investigations. Carotenoids have also become useful indicators of the size and structure of the photosystems and of foliar responses to environmental change. There are several approaches to pigment analysis which include in vitro extraction and in vivo methods. This bibliography lists over 300 references related to plant pigments, predominantly between 1940 and 1998. They are arranged in five sections: photosynthetic pigments, pigment measurement, environment, physiology, and ecology. Many of the references focus on forest trees and forestry; however, some references to work on other plant species are included to give a more complete perspective. This bibliography is intended to provide readers with a guide to the conduct and application of determinations of foliar photosynthetic pigments.

Résumé

Il est souvent pratique courante de mesurer la teneur en chlorophylle des tissus, dans le cadre di études écologiques et physiologiques. Les caroténoïdes se sont également révélés des indicateurs utiles, lorsqu'on veut déterminer la taille et la structure des photosystèmes ou examiner les réactions du feuillage aux changements du milieu. Par ailleurs, il existe plusieurs méthodes pour analyser les pigments, dont l'extraction in vitro et les techniques in vivo. La présente bibliographie énumère plus de 300 publications ayant trait aux pigments végétaux, publiées principalement entre 1940 et 1998. Nous les avons classées selon cinq grands domaines: pigments photosynthétiques; mesure des pigments; environnement; physiologie; écologie. La plupart de ces publications portent sur les arbres forestiers et l’exploitation forestière, mais nous avons inclus quelques travaux ayant trait à d’autres végétaux, pour assurer une couverture plus complète du sujet. La bibliographie servira de guide au lecteur qui souhaite mesurer les pigments photosynthétiques du feuillage ou utiliser les résultats de telles mesures.

Acknowledgements

The authors acknowledge the contributions of Mr. T. Bown and Ms. L. McKinnon, Pacific Forestry Centre. Thanks also to Mr. S. Glover for editorial comments, Ms. J. Adsett for layout, and Ms. B. Hendel and Ms. A. Solyma for assistance in correcting difficult citations.
Introduction

For the past 50 years, incremental improvements in chlorophyll determination have been indicative of the importance of understanding the role of foliar pigments in interpreting growth responses of plants. Determination of foliar pigments has found application in a variety of fields including plant biochemistry and physiology, crop science, horticulture and forestry. Primarily, the chlorophyll and pigment content of forest tree species has been used to address questions involving limits to photosynthesis and productivity at the branch or tree level. Of late, concerns over changes in climate and landscape-level disturbances have driven research on linking pigment analyses and remote sensing in order to derive stand and landscape-level indicators of changes in ecosystem function. Many destructive and non-destructive methods of pigment determination have been used that employ different solvents, procedures, formulas and instruments. This bibliography is intended to focus on forestry and forest trees and the history, complexity and diversity of research on foliar pigments.

History

Chlorophyll has been used as an indicator of plant health as early as 1912 and those studies mainly focused on qualitative differences at the leaf and the whole plant level. In 1913, first attempts were made to characterize foliar pigments other than chlorophyll and in the 1920's and 1930's, research focused on in vivo determination of chlorophyll. Some of the earliest in vitro chlorophyll extraction methods were explored in the late 1930s and early 1940s but these methods were cumbersome, often requiring physical separation of pigments by chromatography. In 1949, Arnon modified a procedure by MacKinney (1941) that used acetone to extract chlorophyll and employed spectrophotometry for quantitation. This method refined previous techniques and thus its use became widespread. Some researchers modified formulas by Arnon slightly and others developed equations to determine additional pigments. In the 1950s and 1960s, different methods, solvents, extinction coefficients, instruments and species were explored and the advantages and disadvantages of each were discovered.

In the 1970s and 1980s, the need to scale up from leaves and trees to stands and ecosystems has driven research on linking indicators of forest health, derived from pigment analyses, to remote sensing. Inverse relationships between chlorophyll content and leaf or fruit reflectance were shown in 1961, 1971 and 1980 using both transmission and reflectance spectroscopy. By the 1980s, hand-held instruments were developed that could be used for field studies of pigment function and attention shifted to improving the sensitivity of pigment determination and the variety of pigments that could be separated and quantified. These methods, employing reverse phase high-performance liquid chromatography (HPLC), have provided the basis for research on the interactions among foliar pigments in response to changes in environmental factors such as light, temperature and nutrition. The 1990’s have seen wide spread application of these techniques in forestry.

Applications

Our interest in photosynthetic pigments and their determination arose from questions concerning growth limitations on regenerating conifers resulting from the use of silvicultural alternatives to clearcutting that employ varying levels of overstorey retention. By analyzing foliar pigment concentrations and coupling those results with other measures of foliar efficiency, including photosynthesis and chlorophyll fluorescence, we are engaged in developing physiological indicators of changes in ecosystem processes that underpin sustainability. To date, work has focused on quantifying the effects of individual environmental factors such as shade and nutrition. Future goals include developing links between foliar pigments and spectral reflectance of foliage for application in remote sensing.
The Bibliography

This bibliography lists over 300 references related to plant pigments, predominantly published between 1940 and 1998. There are a few prior to 1940 to provide a historical perspective, and there are some foreign language articles. It is divided into five main sections. The first focuses on the characterization of foliar pigments, their biosynthesis and molecular regulation. The second focuses on determination methods including extraction, and instrumentation as well as on links between chlorophyll fluorescence and spectral reflectance. The third section is oriented toward applications of pigment analyses in the development of indicators of stresses resulting from changes in environmental factors such as nutrition, temperature, and light. Physiological aspects of pigments with regards to conifers, photoinhibition and shade are presented in the fourth section. The role of pigment analysis in ecological studies and impact of pests and disease form the fifth section.
Photosynthetic Pigments

Chlorophyll

Carotenoids

Xanthophylls

22(2):249-260.

and the ratios of chlorophyll, beta-carotene, and the components of the xanthophyll cycle upon a sudden

Diaz, M.; Ball, E.; Luttge, U. 1990. Stress induced accumulation of the xanthophyll rhodoxanthin in leaves of Aloe

lepidophylla (Hook. & Grev.) Spring during high-light and dessication stress, and evidence for zeaxanthin-

Gilmore, A.M.; Yamamoto, H.Y. 1993. Linear models relating xanthophyll and lumen acidity to non-
photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent

Ges. 88, 27-44.

Korniushenko, G.A.; Evdokimova, I.V.; Psurtseva, N.V. 1978. The character of photoinduced transformation of
xanthophylls in isolated chloroplasts of plants grown under conditions of different light intensity [Peas]. Bot.

85(4):910-915.

Lichtenthaler, H.K.; Schindler, C.; Murata, N. 1992. Studies on the photoprotective function of zeaxanthin at high-
Publishers, Dordrecht and Boston.

Logan, B.A.; Barker, D.H.; Adams, W.W. III; Demmig-Adams, B. 1997. The response of xanthophyll cycle-
dependent energy dissipation in Alocasia brisbanensis to sunflecks in a subtropical rainforest. Aust. J. Plant

Lovelock, C.E.; Clough, B.F. 1992. Influence of solar radiation and leaf angle on leaf xanthophyll concentrations in

Pigment Measurement

Extraction

Chromatography

Fluorescence

Reflectance

Environment

Light

Temperature

Hurry, V.M.; Gardestrom, P.; Öquist, G. Reduced sensitivity to photoinhibition following frost hardening of winter rye is due to increased phosphate availability. Planta 190:484-490.

Nutrition

Water

Climate Change

Muller, J. 1957. Specific proof of SO$_2$ fume damage to plants by means of leaf-pigment analyses. Naturwissenschaften. 44(16):453.

Seasonal Change

Physiology

Conifers

Photoinhibition

Shade

Ecology

Pests and Disease

